ADI-BASED METHODS FOR ALGEBRAIC LYAPUNOV AND RICCATI EQUATIONS

Peter Benner

Professur Mathematik in Industrie und Technik
 Fakultät für Mathematik
 Technische Universität Chemnitz

Partially based on joint work with Jens Saak, Martin Köhler (both TU Chemnitz), Ninoslav Truhar (U Osijek), and Ren-Cang Li (UT Arlington)

CICADA/MIMS Workshop on Numerics for Control and Simulation

Manchester, June 17, 2009

Overview

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian
Software
Conclusions and Open Problems References

1 Large-Scale Matrix Equtions

- Motivation

2 ADI Method for Lyapunov Equations

- Low-Rank ADI for Lyapunov equations
- Factored Galerkin-ADI Iteration

3 Newton-ADI for AREs
■ Low-Rank Newton-ADI for AREs

- Application to LQR Problem

■ Numerical Results

- Quadratic ADI for AREs
- AREs with High-Rank Constant Term

4 AREs with Indefinite Hessian

- H_{∞}-Control

■ Lyapunov Iterations/Perturbed Hessian Approach
■ Riccati Iterations
■ Numerical example
5 Software
6 Conclusions and Open Problems
7 References

Large-Scale Matrix Equtions

Large-Scale Algebraic Lyapunov and Riccati Equations

```
ADI for Lyapunov
    and Riccati
    Peter Benner
Large-Scale
Matrix Equtions
Motivation
ADI for Lyapunov
Newton-ADI for
AREs
AREs with
Indefinite Hessian
Software
Conclusions and
Open Problems
References
General form of algebraic Riccati equation (ARE) for \(A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}\) given and \(X \in \mathbb{R}^{n \times n}\) unknown:
\[
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
\]
\(G=0 \Longrightarrow\) Lyapunov equation:
\[
0=\mathcal{L}(X):=A^{\top} X+X A+W .
\]
Typical situation in model reduction and optimal control problems for semi-discretized PDEs:
```


Large-Scale Matrix Equtions

Large-Scale Algebraic Lyapunov and Riccati Equations

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions Motivation

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian

Software

Conclusions and Open Problems

References

General form of algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

Large-Scale Matrix Equtions

Large-Scale Algebraic Lyapunov and Riccati Equations

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions Motivation

ADI for Lyapunov
Newton-ADI for AREs

AREs with Indefinite Hessian Software

Conclusions and Open Problems

General form of algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Large-Scale Matrix Equtions

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions Motivation

ADI for Lyapunov
Newton-ADI for AREs

AREs with Indefinite Hessian Software

Conclusions and Open Problems

General form of algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{\top}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Large-Scale Matrix Equtions

General form of algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Large-Scale Matrix Equtions

General form of algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions Motivation

ADI for Lyapunov
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $X=X^{\top} \geq 0 \Longrightarrow$

$$
X=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

Large-Scale Matrix Equtions

Low-Rank Approximation

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions Motivation

ADI for Lyapunov
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

Consider spectrum of ARE solution (analogous for Lyapunov equations).
eigenvalues of \boldsymbol{X} for $\mathrm{h}=\mathbf{0 . 0 1}$

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

$$
X=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

\Longrightarrow Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X !

Motivation

Linear-quadratic Optimal Control

Numerical solution of linear-quadratic optimal control problem for parabolic PDEs via Galerkin approach, spatial FEM discretization \rightsquigarrow

LQR Problem (finite-dimensional)

$\operatorname{Min} \mathcal{J}(u)=\frac{1}{2} \int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u\right) d t \quad$ for $u \in \mathcal{L}_{2}\left(0, \infty ; \mathbb{R}^{m}\right)$,
subject to $M \dot{x}=-S x+B u, \quad x(0)=x_{0}, \quad y=C x$, with stiffness $S \in \mathbb{R}^{n \times n}$, mass $M \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$.

Solution of finite-dimensional LQR problem: feedback control

$$
u_{*}(t)=-B^{\top} X_{*} x(t)=:-K_{*} x(t),
$$

where $X_{*}=X_{*}^{\top} \geq 0$ is the unique stabilizing ${ }^{1}$ solution of the ARE

$$
0=\mathcal{R}(X):=C^{\top} C+A^{\top} X+X A-X B B^{\top} X,
$$

with $A:=-M^{-1} S, B:=M^{-1} B R^{-\frac{1}{2}}, C:=C Q^{-\frac{1}{2}}$

Motivation

Linear-quadratic Optimal Control

Numerical solution of linear-quadratic optimal control problem for parabolic PDEs via Galerkin approach, spatial FEM discretization \rightsquigarrow

LQR Problem (finite-dimensional)

$\operatorname{Min} \mathcal{J}(u)=\frac{1}{2} \int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u\right) d t \quad$ for $u \in \mathcal{L}_{2}\left(0, \infty ; \mathbb{R}^{m}\right)$,
subject to $M \dot{x}=-S x+B u, \quad x(0)=x_{0}, \quad y=C x$, with stiffness $S \in \mathbb{R}^{n \times n}$, mass $M \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$.

Solution of finite-dimensional LQR problem: feedback control

$$
u_{*}(t)=-B^{T} X_{*} x(t)=:-K_{*} x(t),
$$

where $X_{*}=X_{*}^{\top} \geq 0$ is the unique stabilizing ${ }^{1}$ solution of the ARE

$$
0=\mathcal{R}(X):=C^{T} C+A^{T} X+X A-X B B^{T} X,
$$

with $A:=-M^{-1} S, B:=M^{-1} B R^{-\frac{1}{2}}, C:=C Q^{-\frac{1}{2}}$.
${ }^{1} X$ is stabilizing $\Leftrightarrow \Lambda\left(A-B B^{T} X\right) \subset \mathbb{C}^{-}$.

Motivation

Model Reduction by Balanced Truncation

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
Motivation
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian

Software

Conclusions and Open Problems

References

Linear, Time-Invariant (LTI) Systems

$$
\Sigma:\left\{\begin{array}{llll}
\dot{x}(t) & =A x+B u, & & A \in \mathbb{R}^{n \times n},
\end{array} \quad B \in \mathbb{R}^{n \times m}, ~ \begin{array}{ll}
& B(t)=C x+D u,
\end{array} \quad \begin{array}{l}
C \in \mathbb{R}^{p \times n},
\end{array} \quad D \in \mathbb{R}^{p \times m} .\right.
$$

(A, B, C, D) is a realization of Σ (nonunique).

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions Motivation
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian Software

Conclusions and Open Problems

References

Linear, Time-Invariant (LTI) Systems

$$
\Sigma:\left\{\begin{array}{lll}
\dot{x}(t)=A x+B u, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m} \\
y(t)=C x+D u, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}
\end{array}\right.
$$

(A, B, C, D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
T P T^{T}=T^{-T} Q T^{-1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

Balancing Σ w.r.t. P, Q :

$$
\Sigma \equiv(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \equiv \Sigma
$$

Motivation

Model Reduction by Balanced Truncation

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale
Matrix Equtions
Motivation
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian Software

Conclusions and Open Problems

References

Model Reduction Based on Balancing

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
T P T^{T}=T^{-T} Q T^{-1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

Balancing Σ w.r.t. P, Q :

$$
\Sigma \equiv(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \equiv \Sigma
$$

For Balanced Truncation: $P / Q=$ controllability/observability Gramian of Σ, i.e., for asymptotically stable systems, P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0 .
$$

Motivation

Model Reduction by Balanced Truncation

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
Motivation
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian

Software

Conclusions and Open Problems

Basic Model Reduction Procedure

1 Given $\Sigma \equiv(A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$
\begin{aligned}
(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

2 Truncation \rightsquigarrow reduced-order model:

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right) .
$$

Motivation

Model Reduction by Balanced Truncation

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
Motivation
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian

Software

Conclusions and Open Problems

Basic Model Reduction Procedure

1 Given $\Sigma \equiv(A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$
\begin{aligned}
(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

2 Truncation \rightsquigarrow reduced-order model:

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right) .
$$

Motivation

Model Reduction by Balanced Truncation

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
Motivation
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

Implementation: SR Method

1 Given Cholesky (square) or (low-rank approximation to) full-rank (maybe rectangular, "thin") factors of P, Q

$$
P=S^{T} S, \quad Q=R^{T} R
$$

2 Compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
$$

3 Set

$$
W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}, \quad V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}
$$

4 Reduced-order model is

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D}):=\left(W^{\top} A V, W^{\top} B, C V, D\right)\left(\equiv\left(A_{11}, B_{1}, C_{1}, D\right) .\right)
$$

Recall Peaceman Rachford ADI:
Consider $A u=s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^{n}$. ADI Iteration Idea:
Decompose $A=H+V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$
\begin{aligned}
& (H+p l) v=r \\
& (V+p l) w=t
\end{aligned}
$$

can be solved easily/efficiently.

ADI Iteration

If H, V spd $\Rightarrow \exists p_{k}, k=1,2, \ldots$ such that

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} I\right) u_{k-\frac{1}{2}} & =\left(p_{k} I-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} I-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

ADI Method for Lyapunov Equations

Background

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapunov LR-ADI
Factored Galerkin-ADI Iteration AREs

AREs with Indefinite Hessian

Recall Peaceman Rachford ADI:
Consider $A u=s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^{n}$. ADI Iteration Idea:
Decompose $A=H+V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$
\begin{aligned}
& (H+p l) v=r \\
& (V+p l) w=t
\end{aligned}
$$

can be solved easily/efficiently.

ADI Iteration

If H, V spd $\Rightarrow \exists p_{k}, k=1,2, \ldots$ such that

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} I\right) u_{k-\frac{1}{2}} & =\left(p_{k} I-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} I-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

The Lyapunov operator

$$
\mathcal{L}: \quad P \quad \mapsto \quad A X+X A^{T}
$$

can be decomposed into the linear operators

$$
\mathcal{L}_{H}: X \mapsto A X \quad \mathcal{L}_{V}: X \mapsto X A^{T}
$$

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation
 [WACHSPRESS 1988

$$
\begin{aligned}
P_{0} & =0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-W-P_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T} & =-W-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{aligned}
$$

Low-Rank ADI for Lyapunov equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T} .
$$

- ADI Iteration:
[WAChSPRESS 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}{ }^{T} & =-B B^{T}-X_{k-\frac{1}{2}}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Low-Rank ADI for Lyapunov equations

■ For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T}
$$

■ ADI Iteration:
[WACHSPRESS 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}^{T} & =-B B^{T}-X_{k-\frac{1}{2}}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.
■ For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
■ Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Low-Rank ADI for Lyapunov equations

Lyapunov equation $0=A X+X A^{T}+B B^{T}$.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions ADI for Lyapuno LR-ADI
Factored Galerkin-ADI Iteration AREs

AREs with Indefinite Hessian Software Conclusions and Open Problems

Setting $X_{k}=Y_{k} Y_{k}^{\top}$, some algebraic manipulations \Longrightarrow

Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/PenzL '99/'08]

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A+p_{1} /\right)^{-1} B, \quad Y_{1} \leftarrow V_{1}
$$

FOR $k=2,3, \ldots$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Y_{k} \leftarrow\left[\begin{array}{l}
Y_{k-1} \\
V_{k}
\end{array}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

At convergence, $Y_{k_{\max }} Y_{k_{\max }}^{T} \approx X$, where (without column compression)

$$
Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=\square \in \mathbb{C}^{n \times m} .
$$

Note: Implementation in real arithmetic possible by combining two steps.

Low-Rank ADI for Lyapunov equations

Lyapunov equation $0=A X+X A^{T}+B B^{T}$.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored
Galerkin-ADI Iteration

Newton-ADI for AREs

AREs with Indefinite Hessian Software

Setting $X_{k}=Y_{k} Y_{k}^{\top}$, some algebraic manipulations \Longrightarrow
Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)\left(A+p_{1} I\right)^{-1} B, \quad Y_{1} \leftarrow V_{1} .}
$$

$$
\text { FOR } k=2,3, \ldots
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Y_{k} \leftarrow\left[Y_{k-1} \quad V_{k}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

At convergence, $Y_{k_{\text {max }}} Y_{k_{\text {max }}}^{T} \approx X$, where (without column compression)

$$
Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=\square \in \mathbb{C}^{n \times m}
$$

Note: Implementation in real arithmetic possible by combining two steps.

Numerical Results

Optimal Cooling of Steel Profiles

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems References

- Mathematical model: boundary control for linearized 2D heat equation.

$$
\begin{aligned}
c \cdot \rho \frac{\partial}{\partial t} x & =\lambda \Delta x, \quad \xi \in \Omega \\
\lambda \frac{\partial}{\partial n} x & =\kappa\left(u_{k}-x\right), \quad \xi \in \Gamma_{k}, 1 \leq k \leq 7, \\
\frac{\partial}{\partial n} x & =0, \quad \xi \in \Gamma_{7} . \\
\Longrightarrow m=7, p & =6 .
\end{aligned}
$$

- FEM Discretization, different models for initial mesh ($n=371$), $1,2,3,4$ steps of mesh refinement \Rightarrow $n=1357,5177,20209,79841$.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, SaAk 2003.

Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov LR-ADI
Factored Gaterkin-ADI Iteration

Newton-ADI for AREs

AREs with Indefinite Hessian Software

Conclusions and Open Problems References

■ Solve dual Lyapunov equations needed for balanced truncation, i.e.,

$$
A P M^{T}+M P A^{T}+B B^{T}=0, \quad A^{T} Q M+M^{T} Q A+C^{T} C=0
$$

for 79, 841. Note: $m=7, p=6$.

- 25 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- New version in MESS (Matrix Equations Sparse Solvers) requires no factorization of mass matrix!
■ Computations done on Core2Duo at 2.8 GHz with 3 GB RAM and 32Bit-Matlab.

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored Galerkin-ADI Iteration

Newton-ADI for AREs

AREs with Indefinite Hessian Software

- $A \in \mathbb{R}^{n \times n} \equiv \mathrm{FDM}$ matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).

■ 16 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
■ Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

Recent Numerical Results

Computations by Martin Köhler

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored
Gaterkin-ADI Iteration

Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

- $A \in \mathbb{R}^{n \times n} \equiv \mathrm{FDM}$ matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
■ 16 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
■ Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

n	CMESS	LYAPACK	MESS
100	0.023	0.124	0.158
625	0.042	0.104	0.227
2,500	0.159	0.702	0.989
10,000	0.965	6.22	5.644
40,000	11.09	71.48	34.55
90,000	34.67	418.5	90.49
160,000	109.3	out of memory	219.9
250,000	193.7	out of memory	403.8
562,500	930.1	out of memory	1216.7
$1,000,000$	2220.0	out of memory	2428.6

Recent Numerical Results

Computations by Martin Köhler

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-AD
Factored Galerkin-ADI Iteration

■ $A \in \mathbb{R}^{n \times n} \equiv \mathrm{FDM}$ matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).

■ 16 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
■ Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

Note: for $\mathrm{n}=1,000,000$, first sparse LU needs $\sim 1,100$ sec., using UMFPACK this reduces to 30 sec . (result of June 15, 2009).

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov

LR-ADI

Factored Galerkin-ADI Iteration

Newton-ADI for AREs

AREs with Indefinite Hessian Software

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
1 Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
2 Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
3 Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
4 Use $X \approx Z \hat{X} Z^{T}$.

Examples:

■ Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[SaAd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored Galerkin-ADI Iteration

Newton-ADI for AREs

AREs with Indefinite Hessian Software

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
1 Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
2 Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
3 Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
4 Use $X \approx Z \hat{X} Z^{T}$.

Examples:

■ Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[SaAd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].
■ K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right) .
$$

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

AREs with Indefinite Hessian Software

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
1 Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
2 Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
3 Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
4 Use $X \approx Z \hat{X} Z^{T}$.

Examples:

■ ADI subspace [B./R.-C. Li/Truhar '08]:

$$
\mathcal{Z}=\operatorname{colspan}\left[\begin{array}{lll}
V_{1}, & \ldots, & V_{r}
\end{array}\right]
$$

Note:
1 ADI subspace is rational Krylov subspace [J.-R. Li/White '02].
2 Similar approach: ADI-preconditioned global Arnoldi method [JBilou '08].

Factored Galerkin-ADI Iteration

Numerical examples

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunoy LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

AREs with
Indefinite Hessian
Software
Conclusions and Open Problems

References

FEM semi-discretized control problem for parabolic PDE:
■ optimal cooling of rail profiles,
■ $n=20,209, m=7, p=6$.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Factored Galerkin-ADI Iteration

Numerical examples

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

AREs with
Indefinite Hessian
Software
Conclusions and Open Problems

References

FEM semi-discretized control problem for parabolic PDE:
■ optimal cooling of rail profiles,
■ $n=20,209, m=7, p=6$.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Factored Galerkin-ADI Iteration

Numerical examples: optimal cooling of rail profiles, $n=79,841, m=7, p=6$.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems References

MESS w/ Galerkin projection and column compression

Rank of solution factors: 532 / 426

MESS with Galerkin projection and column compression

Rank of solution factors: 269 / 205

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Numerical Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian Software

Conclusions and Open Problems

References

- Consider $\quad 0=\mathcal{R}(X)=C^{T} C+A^{\top} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{\top} X\right)^{T} Z+Z\left(A-B B^{\top} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

$$
\text { FOR } j=0,1, \ldots
$$

$1 A_{j} \leftarrow A-B B^{T} X_{j}=: A-B K_{j}$.
2 Solve the Lyapunov equation $\quad A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.
(3 $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.
END FOR j

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Numertcal
Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian Software

Conclusions and Open Problems

- Consider $\quad 0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

FOR $;=0,1$
$\| A_{j} \leftarrow A-B B^{T} X_{j}=: A-B K_{j}$.
2 Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.
(3) $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.

END FOR j

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $\quad 0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

FOR $j=0,1$
(1) $A_{j} \leftarrow A-B B^{\top} X_{j}=: A-B K_{j}$.

2 Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.
[3 $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.

END FOR j

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs
FOR $j=0,1, \ldots$
$1 A_{j} \leftarrow A-B B^{T} X_{j}=: A-B K_{j}$.
$\boxed{2}$ Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.
${ }^{3} X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.
END FOR j

Factored Galerkin-ADI Iteration

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.

■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).

- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:
$\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1}$
- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Factored Galerkin-ADI Iteration

Properties and Implementation

- Convergence for K_{0} stabilizing:

■ $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).

- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).

■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:
$\left(A-B K_{j}+p_{k}^{(j)} \mid\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} \mid\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} \mid\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} \mid\right)^{-1}$
- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Factored Galerkin-ADI Iteration

Properties and Implementation

■ Convergence for K_{0} stabilizing:
■ $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
$■ \lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Factored Galerkin-ADI Iteration

Properties and Implementation

■ Convergence for K_{0} stabilizing:
■ $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).

- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).

■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

■ BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Re-write Newton's method for AREs

$$
\begin{aligned}
& A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right) \\
& \Longleftrightarrow \\
& A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+\underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}} A_{j}=\underbrace{-C^{T} C-X_{j} B B^{T} X_{j}}_{=:-W_{j} W_{j}^{T}}
\end{aligned}
$$

$$
\text { Set } X_{j}=Z_{j} Z_{j}^{T} \text { for } \operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow
$$

$$
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
$$

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Low-Rank Newton-ADI for AREs

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Numerical Results
Quadiratie ADI for AREs
High-Rank W
AREs with
Indefinite Hessiar
Software
Conclusions and Open Problems

Re-write Newton's method for AREs

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right) \\
\Longleftrightarrow \\
A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+\underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}} A_{j}=\underbrace{-C^{T} C-X_{j} B B^{T} X_{j}}_{=:-W_{j} W_{j}^{T}} \\
\text { Set } X_{j}=Z_{j} Z_{j}^{T} \text { for } \operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow \\
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
\end{gathered}
$$

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Optimal feedback

$$
K_{*}=B^{T} X_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

can be computed by direct feedback iteration:

- j th Newton iteration:

$$
K_{j}=B^{T} Z_{j} Z_{j}^{T}=\sum_{k=1}^{k_{\max }}\left(B^{T} V_{j, k}\right) V_{j, k}^{T} \xrightarrow{j \rightarrow \infty} \quad K_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

- K_{j} can be updated in ADI iteration, no need to even form Z_{j}, need only fixed workspace for $K_{j} \in \mathbb{R}^{m \times n}$!

Related to earlier work by [BANKS/Ito 1991].

Newton-ADI for AREs

Numerical Results

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov

Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical
Results
Quadratic ADI for AREs
High-Rank W
AREs with
Indefinite Hessian
Software
Conclusions and Open Problems

References

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- $n=22.500, m=p=1,10$ shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

Newton-ADI for AREs

Performance of matrix equation solvers

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical
Results
Quadratic ADI for AREs High-Rank W
AREs with Indefinite Hessian

Software
Conclusions and Open Problems

Performance of Newton's method for accuracy $\sim 1 / n$

grid	unknowns	$\frac{\\|\mathcal{R}(X)\\|_{F}}{\\|X\\|_{F}}$	it. (ADI it.)	CPU (sec.)
8×8	2,080	$4.7 \mathrm{e}-7$	$2(8)$	0.47
16×16	32,896	$1.6 \mathrm{e}-6$	$2(10)$	0.49
32×32	524,800	$1.8 \mathrm{e}-5$	$2(11)$	0.91
64×64	$8,390,656$	$1.8 \mathrm{e}-5$	$3(14)$	7.98
128×128	$134,225,920$	$3.7 \mathrm{e}-6$	$3(19)$	79.46

Here,

- Convection-diffusion equation,

■ $m=1$ input and $p=2$ outputs,
■ $X=X^{T} \in \mathbb{R}^{n \times n} \Rightarrow \frac{n(n+1)}{2}$ unknowns.
Confirms mesh independence principle for Newton-Kleinman
[Burns/Sachs/Zietsman '08].

Newton-ADI for AREs

Performance of matrix equation solvers

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-AD
Application to
LQR Probtem
Numerical
Results
Quadratic ADI for AREs High-Rank W
AREs with Indefinite Hessian

Software
Conclusions and Open Problems

Performance of Newton's method for accuracy $\sim 1 / n$

grid	unknowns	$\frac{\\|\mathcal{R}(X)\\|_{F}}{\\|X\\|_{F}}$	it. (ADI it.)	CPU (sec.)
8×8	2,080	$4.7 \mathrm{e}-7$	$2(8)$	0.47
16×16	32,896	$1.6 \mathrm{e}-6$	$2(10)$	0.49
32×32	524,800	$1.8 \mathrm{e}-5$	$2(11)$	0.91
64×64	$8,390,656$	$1.8 \mathrm{e}-5$	$3(14)$	7.98
128×128	$134,225,920$	$3.7 \mathrm{e}-6$	$3(19)$	79.46

Here,

- Convection-diffusion equation,

■ $m=1$ input and $p=2$ outputs,
■ $X=X^{T} \in \mathbb{R}^{n \times n} \Rightarrow \frac{n(n+1)}{2}$ unknowns.
Confirms mesh independence principle for Newton-Kleinman [Burns/Sachs/Zietsman '08].

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
Numerical
Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessiar Software

■ FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

■ 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.

- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-Matlab.

Recent Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian

Software
Conctusions and Open Problems

■ FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

■ 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.

- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64 Bit-Matlab.
Newton-ADI

NWT	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.41 \mathrm{e}+01$	23
3	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	20
4	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	20
5	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	23
6	$5.57 \mathrm{e}-01$	$1.56 \mathrm{e}-02$	23
7	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	23
8	$4.02 \mathrm{e}-04$	$9.68 \mathrm{e}-10$	23
9	$8.45 \mathrm{e}-09$	$1.09 \mathrm{e}-11$	23
10	$1.52 \mathrm{e}-14$	$1.09 \mathrm{e}-11$	23
CPU time:	76.9 sec.		

Recent Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical Results
Quadratic ADI for AREs High-Rank W

AREs with Indefinite Hessian

Software
Conctusions and Open Problems

■ FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-Matlab.

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.41 \mathrm{e}+01$	23
3	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	20
4	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	20
5	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	23
6	$5.57 \mathrm{e}-01$	$1.56 \mathrm{e}-02$	23
7	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	23
8	$4.02 \mathrm{e}-04$	$9.68 \mathrm{e}-10$	23
9	$8.45 \mathrm{e}-09$	$1.09 \mathrm{e}-11$	23
10	$1.52 \mathrm{e}-14$	$1.09 \mathrm{e}-11$	23

CPU time: 76.9 sec .

Newton-Galerkin-ADI

NWT	rel. change	rel. residual	ADI
1	1	$3.56 \mathrm{e}-04$	20
2	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	10
3	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	6
4	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	10
5	$5.57 \mathrm{e}-01$	$1.57 \mathrm{e}-02$	10
6	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	10
7	$4.03 \mathrm{e}-04$	$9.79 \mathrm{e}-10$	10
8	$8.45 \mathrm{e}-09$	$1.43 \mathrm{e}-15$	10

Recent Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical
Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

■ 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.

- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64 Bit-Matlab.

Recent Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian

Software
Conrciusions and Open Problems

References

■ FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyApACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

■ 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.

- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64 Bit-Matlab.
Newton-ADI

NWT	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.56 \mathrm{e}+01$	60
3	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	39
4	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	40
5	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	45
6	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	42
7	$3.88 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	47
8	$2.30 \mathrm{e}-06$	$6.09 \mathrm{e}-13$	47
CPU time: 185.9 sec.$$			

Recent Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical Results
Quadratic ADI for AREs High-Rank W

AREs with Indefinite Hessian

Software
Conctusions and Open Problems

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (Lyapack benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

■ 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.

- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-Matlab.

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.56 \mathrm{e}+01$	60
3	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	39
4	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	40
5	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	45
6	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	42
7	$3.88 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	47
8	$2.30 \mathrm{e}-06$	$6.09 \mathrm{e}-13$	47
CPU time: 185.9 sec.$$			

Newton-Galerkin-ADI

step	rel. change	rel. residual	ADI it.
1	1	$1.78 \mathrm{e}-02$	35
2	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	15
3	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	20
4	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	15
5	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	20
6	$3.89 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	15
7	$2.30 \mathrm{e}-06$	$6.14 \mathrm{e}-13$	20

CPU time: 75.7 sec.

Recent Numerical Results

Computations by Jens Saak

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical
Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.

■ 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.

- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64 Bit-Matlab.

Quadratic ADI for AREs

$0=\mathcal{R}(X)=A^{T} X+X A-X B B^{T} X+W$

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Numerical
Results
Quadratic AD for AREs
High-Rank W
AREs with
Indefinite Hessiar
Software
Conclusions and Open Problems

Basic QADI iteration [Wong/Balakrishnan et al. '05-'08]

$$
\begin{aligned}
\left(\left(A-B B^{T} X_{k}\right)^{T}+p_{k} I\right) X_{k+\frac{1}{2}} & =-W-X_{k}\left(\left(A-p_{k} I\right)\right. \\
\left(\left(A-B B^{T} X_{k+\frac{1}{2}}^{T}\right)^{T}+p_{k} I\right) X_{k+1} & =-W-X_{k+\frac{1}{2}}^{T}\left(A-p_{k} I\right)
\end{aligned}
$$

Derivation of complicated Cholesky factor version, but requires square and invertible Cholesky factors.

Idea of low-rank Galerkin-QADI
 [B./SAAK '09]

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A-B\left(B^{T} Y_{0}\right) Y_{0}^{T}+p_{1} I\right)^{-T} B, \quad Y_{1} \leftarrow V_{1} \\
& \text { FOR } k=2,3, \ldots \\
& \\
& \quad V_{k} \leftarrow V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A-B\left(B^{T} Y_{k-1}\right) Y_{k-1}^{T}+p_{k} I\right)^{-T} V_{k-1} \\
& \quad Y_{k} \leftarrow\left[\begin{array}{cc}
Y_{k-1} & \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}} V_{k}
\end{array}\right] \\
& \quad Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression } \\
& \\
& \text { If desired, project ARE onto range }\left(Y_{k}\right), \text { solve and prolongate. }
\end{aligned}
$$

Quadratic ADI for AREs

$0=\mathcal{R}(X)=A^{T} X+X A-X B B^{T} X+W$

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Numerical
Results
Quadratic ADI for AREs
High-Rank W
AREs with Indefinite Hessian Software

Conclusions and Open Problems

Basic QADI iteration

$$
\begin{aligned}
\left(\left(A-B B^{T} X_{k}\right)^{T}+p_{k} l\right) X_{k+\frac{1}{2}} & =-W-X_{k}\left(\left(A-p_{k} l\right)\right. \\
\left(\left(A-B B^{T} X_{k+\frac{1}{2}}^{\top}\right)^{T}+p_{k} l\right) X_{k+1} & =-W-X_{k+\frac{1}{2}}^{T}\left(A-p_{k} l\right)
\end{aligned}
$$

Derivation of complicated Cholesky factor version, but requires square and invertible Cholesky factors.

Idea of low-rank Galerkin-QADI

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A-B\left(B^{T} Y_{0}\right) Y_{0}^{T}+p_{1} I\right)^{-T} B, \quad Y_{1} \leftarrow V_{1}
$$ FOR $k=2,3, \ldots$

$$
\begin{aligned}
& V_{k} \leftarrow V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A-B\left(B^{\top} Y_{k-1}\right) Y_{k-1}^{\top}+p_{k} I\right)^{-T} V_{k-1} \\
& Y_{k} \leftarrow\left[\begin{array}{rr}
Y_{k-1} & \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}} V_{k}
\end{array}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

If desired, project ARE onto range $\left(Y_{k}\right)$, solve and prolongate.

AREs with High-Rank Constant Term

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Probiem
Numerical
Results
Quadratic ADI
for AREs
High-Rank W
AREs with
Indefinite Hessian
Software
Conclusions and Open Problems

References

Consider ARE

$$
0=\mathcal{R}(X)=W+A^{T} X+X A-X B B^{T} X
$$

with $\operatorname{rank}(W) \nless n$, e.g., stabilization of flow problems described by Navier-Stokes eqns. requires solution of

$$
0=\mathcal{R}(X)=M_{h}-S_{h}^{T} X M_{h}-M_{h} X S_{h}-M_{h} X B_{h} B_{h}^{T} X M_{h},
$$

where $M_{h}=$ mass matrix of $F E$ velocity test functions.
Example: von Kármán vortex street, $\mathrm{Re}=500$
uncontrolled:

controlled using ARE:

AREs with High-Rank Constant Term

Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale Matrix Equtions

One step of Newton-Kleinman iteration for ARE:

$$
A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+X_{j+1} A_{j}=-W-\underbrace{\left(X_{j} B\right)}_{=K_{j}^{T}} \underbrace{B^{T} X_{j}}_{=K_{j}} \quad \text { for } j=1,2, \ldots
$$

Subtract two consecutive equations \Longrightarrow

$$
A_{j}^{T} N_{j}+N_{j} A_{j}=-N_{j-1}^{T} B B^{T} N_{j-1} \quad \text { for } j=1,2, \ldots
$$

See [Banks/Ito '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

But: need $B^{T} N_{0}=K_{1}-K_{0}$!

Assuming K_{0} is known, need to compute K_{1}.

AREs with High-Rank Constant Term

Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Solution idea:

$$
\begin{aligned}
K_{1} & =B^{T} X_{1} \\
& =B^{T} \int_{0}^{\infty} e^{\left(A-B K_{0}\right)^{T} t}\left(W+K_{0}^{T} K_{0}\right) e^{\left(A-B K_{0}\right) t} d t \\
& =\int_{0}^{\infty} g(t) d t \approx \sum_{\ell=0}^{N} \gamma_{\ell} g\left(t_{\ell}\right),
\end{aligned}
$$

where $g(t)=\left(\left(e^{\left(A-B K_{0}\right) t} B\right)^{T}\left(W+K_{0}^{T} K_{0}\right)\right) e^{\left(A-B K_{0}\right) t}$.
[BorgGaard/Stoyanov '08]:
evaluate $g\left(t_{\ell}\right)$ using ODE solver applied to $\dot{x}=\left(A-B K_{0}\right) x+$ adjoint eqn.

AREs with High-Rank Constant Term

Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-AD
Application to LQR Problem
Numerical Results
Quadratic ADI for AREs
High-Rank W
AREs with
Indefinite Hessian
Software
Conclusions and Open Problems

References

Better solution idea:
(related to frequency domain POD [Willcox/Peraire '02])

$$
\begin{aligned}
K_{1} & \left.=B^{T} X_{1} \quad \quad \text { (Notation: } A_{0}:=A-B K_{0}\right) \\
& =B^{T} \cdot \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\jmath \omega I_{n}-A_{0}\right)^{-H}\left(W+K_{0}^{T} K_{0}\right)\left(\jmath \omega I_{n}-A_{0}\right)^{-1} d \omega \\
& =\int_{-\infty}^{\infty} f(\omega) d \omega \approx \sum_{\ell=0}^{N} \gamma_{\ell} f\left(\omega_{\ell}\right),
\end{aligned}
$$

where $\quad f(\omega)=\left(-\left(\left(\jmath \omega I_{n}+A_{0}\right)^{-1} B\right)^{T}\left(W+K_{0}^{T} K_{0}\right)\right)\left(\jmath \omega I_{n}-A_{0}\right)^{-1}$.
Evaluation of $f\left(\omega_{\ell}\right)$ requires

- 1 sparse LU decmposition (complex!),
- $2 m$ forward/backward solves,

■ m sparse and $2 m$ low-rank matrix-vector products.
Use adaptive quadrature with high accuracy, e.g. Gauß-Kronrod (Matlab's quadgk).

AREs with Indefinite Hessian

ADI for Lyapunov and Riccati

Peter Benner

$$
\mathcal{R}(X):=C^{T} C+A^{T} X+X A+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=0 .
$$

AREs with Indefinite Hessian

ADI for Lyapunov and Riccati

Peter Benner

$$
\mathcal{R}(X):=C^{T} C+A^{T} X+X A+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=0 .
$$

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Problems

■ For large-scale problems, resulting, e.g., from H_{∞} control, standard methods based on Hamiltonian/even eigenvalue problem can not be used due to $\mathcal{O}\left(n^{3}\right)$ complexity/dense matrix algebra.

- Krylov subspace methods might be employed, but so far no convergence results, and in case of convergence, no guarantee that stabilizing solution is computed.
- Newton/Newton-ADI method will in general diverge/converge to a non-stabilizing solution.

AREs with Indefinite Hessian

ADI for Lyapunov and Riccati

Peter Benner

$$
\mathcal{R}(X):=C^{T} C+A^{T} X+X A+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=0 .
$$

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Problems
■ For large-scale problems, resulting, e.g., from H_{∞} control, standard methods based on Hamiltonian/even eigenvalue problem can not be used due to $\mathcal{O}\left(n^{3}\right)$ complexity/dense matrix algebra.

- Krylov subspace methods might be employed, but so far no convergence results, and in case of convergence, no guarantee that stabilizing solution is computed.
- Newton/Newton-ADI method will in general diverge/converge to a non-stabilizing solution.

AREs with Indefinite Hessian

ADI for Lyapunov and Riccati

Peter Benner

$$
\mathcal{R}(X):=C^{T} C+A^{T} X+X A+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=0 .
$$

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Now:

Problems

■ For large-scale problems, resulting, e.g., from H_{∞} control, standard methods based on Hamiltonian/even eigenvalue problem can not be used due to $\mathcal{O}\left(n^{3}\right)$ complexity/dense matrix algebra.

- Krylov subspace methods might be employed, but so far no convergence results, and in case of convergence, no guarantee that stabilizing solution is computed.

■ Newton/Newton-ADI method will in general diverge/converge to a non-stabilizing solution.

Motivation: H_{∞}-Control

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessiar H_{∞}-Control Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems

References

Linear time-invariant systems

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}=A x+B_{1} w+B_{2} u \\
z=C_{1} x+D_{11} w+D_{12} u \\
y=C_{2} x+D_{21} w+D_{22} u
\end{array}\right.
$$

where $A \in \mathbb{R}^{n \times n}, B_{k} \in \mathbb{R}^{n \times m_{k}}, C_{j} \in \mathbb{C}^{p_{j} \times n}, D_{j k} \in \mathbb{R}^{p_{j} \times m_{k}}$.
x - states of the system,
w - exogenous inputs
u - control inputs,
z - performance outputs
y - measured outputs

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems

Laplace transform \Longrightarrow transfer function (in frequency domain)

$$
G(s)=\left[\begin{array}{cc}
G_{11}(s) & G_{12}(s) \\
G_{21}(s) & G_{22}(s)
\end{array}\right] \equiv\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
C_{2} & D_{21} & D_{22}
\end{array}\right]
$$

where for $x(0)=0, G_{i j}$ are the rational matrix functions
■ $G_{11}(s)=C_{1}(s l-A)^{-1} B_{1}+D_{11}$,

- $G_{12}(s)=C_{1}(s l-A)^{-1} B_{2}+D_{12}$,

■ $G_{21}(s)=C_{2}(s l-A)^{-1} B_{1}+D_{21}$,

- $G_{22}(s)=C_{2}(s l-A)^{-1} B_{2}+D_{22}$,
describing the transfer from inputs to outputs of Σ via

$$
\begin{aligned}
& z(s)=G_{11}(s) w(s)+G_{12}(s) u(s) \\
& y(s)=G_{21}(s) w(s)+G_{22}(s) u(s)
\end{aligned}
$$

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapunov
Newton-ADI for AREs

AREs with
Indefinite Hessiar
H_{∞}-Control
Lyapunov Itera-
tions/Perturbed
Hessian
Approach
Riccati' Iterations
Numerical
example
Software
Conclusions and Open Problems

References

Consider closed-loop system, where $K(s)$ is an internally stabilizing controller, i.e., K stabilizes G for $w \equiv 0$.

Consider closed-loop system, where $K(s)$ is an internally stabilizing controller, i.e., K stabilizes G for $w \equiv 0$.

Goal:

find K that minimize error outputs

$$
z=\left(G_{11}+G_{12} K\left(I-G_{22} K\right)^{-1} G_{21}\right) w=: \mathcal{F}(G, K) w,
$$

where $\mathcal{F}(G, K)$ is the linear fractional transformation of G, K.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian
H_{∞}-Control
Lyapunov Itera-
tions/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Consider closed-loop system, where $K(s)$ is an internally stabilizing controller, i.e., K stabilizes G for $w \equiv 0$.

Goal:

find K that minimize error outputs

$$
z=\left(G_{11}+G_{12} K\left(I-G_{22} K\right)^{-1} G_{21}\right) w=: \mathcal{F}(G, K) w
$$

where $\mathcal{F}(G, K)$ is the linear fractional transformation of G, K.

H_{∞}-optimal control problem:

$$
\min _{K \text { stabilizing }}\|\mathcal{F}(G, K)\|_{\mathcal{H}_{\infty}}
$$

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian
H_{∞}-Control
Lyapunov Itera-
tions/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Consider closed-loop system, where $K(s)$ is an internally stabilizing controller, i.e., K stabilizes G for $w \equiv 0$.

Goal:

find K that minimize error outputs

$$
z=\left(G_{11}+G_{12} K\left(I-G_{22} K\right)^{-1} G_{21}\right) w=: \mathcal{F}(G, K) w
$$

where $\mathcal{F}(G, K)$ is the linear fractional transformation of G, K.

H_{∞}-suboptimal control problem:

For given constant $\gamma>0$, find all internally stabilizing controllers satisfying

$$
\|\mathcal{F}(G, K)\|_{\mathcal{H}_{\infty}}<\gamma .
$$

Simplifying assumptions
$11 D_{11}=0$;
(2) $D_{22}=0$;

3 (A, B_{1}) stabilizable, $\left(C_{1}, A\right)$ detectable;
4 (A, B_{2}) stabilizable, $\left(C_{2}, A\right)$ detectable $(\Longrightarrow \Sigma$ internally stabilizable);
$5 D_{12}^{T}\left[\begin{array}{ll}C_{1} & D_{12}\end{array}\right]=\left[\begin{array}{ll}0 & I_{m_{2}}\end{array}\right]$;
б $\left[\begin{array}{c}B_{1} \\ D_{21}\end{array}\right] D_{21}^{T}=\left[\begin{array}{c}0 \\ I_{p_{2}}\end{array}\right]$.
Remark. 1.,2.,5.,6. only for notational convenience, 3. can be relaxed, but derivations get even more complicated.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian H_{∞}-Control Lyapunov Iterations/Perturbed Hessian
Approach
Riccatí Iterations Numerical example

Software
Conclusions and Open Problems

References

Theorem [Doyle/Glover/Khargonekar/Francis '89]
Given the Assumptions 1.-6., there exists an admissible controller $K(s)$ solving the H_{∞}-suboptimal control problem \Longleftrightarrow
(i) There exists a solution $X_{\infty}=X_{\infty}^{T} \geq 0$ to the ARE

$$
\begin{equation*}
C_{1} C_{1}^{T}+A^{T} X+X A+X\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=0 \tag{1}
\end{equation*}
$$

such that A_{X} is Hurwitz, where $A_{X}:=A+\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X_{\infty}$.
(ii) There exists a solution $Y_{\infty}=Y_{\infty}^{T} \geq 0$ to the ARE

$$
\begin{equation*}
B_{1} B_{1}^{T}+A Y+Y A^{T}+Y\left(\gamma^{-2} C_{1} C_{1}^{T}-C_{2} C_{2}^{T}\right) Y=0 \tag{2}
\end{equation*}
$$

such that A_{Y} is Hurwitz where $A_{Y}:=A+Y_{\infty}\left(\gamma^{-2} C_{1} C_{1}^{T}-C_{2} C_{2}^{T}\right)$.
(iii) $\gamma^{2}>\rho\left(X_{\infty} Y_{\infty}\right)$.

H_{∞}-optimal control

Find minimal γ for which (i)-(iii) are satisfied $\rightsquigarrow \gamma$-iteration based on solving AREs (1)-(2) repeatedly for different γ.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian H_{∞}-Control Lyapunov Iterations/Perturbed Hessian Approach Riccati Iterations Numerical example

Software

Theorem [Doyle/Glover/Khargonekar/Francis '89]

Given the Assumptions 1.-6., there exists an admissible controller $K(s)$ solving the H_{∞}-suboptimal control problem \Longleftrightarrow
(i) There exists a solution $X_{\infty}=X_{\infty}^{T} \geq 0$ to the ARE

$$
\begin{equation*}
C_{1} C_{1}^{T}+A^{T} X+X A+X\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=0 \tag{1}
\end{equation*}
$$

such that A_{X} is Hurwitz, where $A_{X}:=A+\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X_{\infty}$.
(ii) There exists a solution $Y_{\infty}=Y_{\infty}^{T} \geq 0$ to the ARE

$$
\begin{equation*}
B_{1} B_{1}^{T}+A Y+Y A^{T}+Y\left(\gamma^{-2} C_{1} C_{1}^{T}-C_{2} C_{2}^{T}\right) Y=0 \tag{2}
\end{equation*}
$$

such that A_{Y} is Hurwitz where $A_{Y}:=A+Y_{\infty}\left(\gamma^{-2} C_{1} C_{1}^{T}-C_{2} C_{2}^{T}\right)$.
(iii) $\gamma^{2}>\rho\left(X_{\infty} Y_{\infty}\right)$.

H_{∞}-optimal control

Find minimal γ for which (i)-(iii) are satisfied $\rightsquigarrow \gamma$-iteration based on solving AREs (1)-(2) repeatedly for different γ.

AREs with Indefinite Hessian H_{∞}-Control Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems
H_{∞}-(sub-)optimal controller
If (i)-(iii) hold, a suboptimal controller is given by

$$
\hat{K}(s)=\left[\begin{array}{c|c}
\hat{A} & \hat{B} \\
\hline \hat{C} & 0
\end{array}\right]=\hat{C}\left(s l_{n}-\hat{A}\right)^{-1} \hat{B},
$$

where for

$$
Z_{\infty}:=\left(I-\gamma^{-2} Y_{\infty} X_{\infty}\right)^{-1}
$$

$$
\begin{aligned}
\hat{A} & :=A+\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X_{\infty}-Z_{\infty} Y_{\infty} C_{2}^{T} C_{2}, \\
\hat{B} & :=Z_{\infty} Y_{\infty} C_{2}^{T}, \\
\hat{C} & :=-B_{2}^{T} X_{\infty} .
\end{aligned}
$$

$\hat{K}(s)$ is the central or minimum entropy controller.

AREs with

ARE with indefinite Hessian

$$
0=\mathcal{R}(X):=C^{T} C+A^{T} X+X A+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right)
$$

Consider $X^{-1} \mathcal{R}(X) X^{-1}=0$
\rightsquigarrow standard ARE for $\tilde{X} \equiv X^{-1}$

$$
\tilde{\mathcal{R}}(\tilde{X}):=\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right)+\tilde{X} A^{T}+A \tilde{X}+\tilde{X} C^{T} C \tilde{X}=0
$$

Newton's method will converge to stabilizing solution, Newton-ADI can be employed (with modification for indefinite constant term).

But: low-rank approximation of \tilde{X} will not yield good approximation of $X \Rightarrow$ not feasible for large-scale problems!

Idea

Perturb Hessian to enforce semi-definiteness: write

$$
\begin{aligned}
& 0=A^{T} X+X A+Q-X G X=A^{T} X+X A+Q-X D X+X(D-G) X, \\
& \text { where } D=G+\alpha I \geq 0 \text { with } \alpha \geq \min \left\{0,-\lambda_{\max }(G)\right\} .
\end{aligned}
$$

AREs with
Indefinite Hessian
Lyapunov Itera-

Approach
Riccati Iterations Numerical example
Software
Conclusions and Open Problems

Idea

Perturb Hessian to enforce semi-definiteness: write

$$
\begin{aligned}
& 0=A^{T} X+X A+Q-X G X=A^{T} X+X A+Q-X D X+X(D-G) X \\
& \text { where } D=G+\alpha I \geq 0 \text { with } \alpha \geq \min \left\{0,-\lambda_{\max }(G)\right\}
\end{aligned}
$$

Here: $G=B_{2} B_{2}^{T}-B_{1} B_{1}^{T}$
\Rightarrow use $\alpha=\left\|B_{1}\right\|^{2}$ for spectral/Frobenius norm or

$$
\alpha=\left\|B_{1}\right\|_{1} \cdot\left\|B_{1}\right\|_{\infty}
$$

Remark

$W \geq-G$ can be used instead of αl, e.g., $W=\beta B_{1} B_{1}^{T}$ with $\beta \geq 1$.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian Approach
Riccati Iterations Numerical example Software

Conclusions and Open Problems

Idea

Perturb Hessian to enforce semi-definiteness: write

$$
\begin{aligned}
& 0=A^{T} X+X A+Q-X G X=A^{T} X+X A+Q-X D X+X(D-G) X, \\
& \text { where } D=G+\alpha I \geq 0 \text { with } \alpha \geq \min \left\{0,-\lambda_{\max }(G)\right\} .
\end{aligned}
$$

Lyapunov iteration

Based on

$$
(A-D X)^{\top} X+X(A-D X)=-Q-X D X-\alpha X^{2}
$$

iterate
FOR $k=0,1, \ldots$, solve Lyapunov equation

$$
\left(A-D X_{k}\right)^{T} X_{k+1}+X_{k+1}\left(A-D X_{k}\right)=-Q-X_{k} D X_{k}-\alpha X_{k}^{2} .
$$

AREs with
Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach

Lyapunov iteration
FOR $k=0,1, \ldots$, solve Lyapunov equation

$$
\left(A-D X_{k}\right)^{T} X_{k+1}+X_{k+1}\left(A-D X_{k}\right)=-Q-X_{k} D X_{k}-\alpha X_{k}^{2} .
$$

Easy to convert to low-rank iteration employing low-rank ADI for Lyapunov equations, e.g. with $W=B_{1} B_{1}^{T}$ instead of αI : the Lyapunov equation becomes

$$
\begin{aligned}
& \left(A-B_{2} B_{2}^{T} Y_{k} Y_{k}\right)^{T} Y_{k+1} Y_{k+1}^{T}+Y_{k+1} Y_{k+1}^{T}\left(A-B_{2} B_{2}^{T} Y_{k} Y_{k}\right) \\
& =-C C^{T}-Y_{k} Y_{k}^{T} B_{1} B_{1}^{T} Y_{k} Y_{k}^{T}-Y_{k} Y_{k}^{T} B_{2} B_{2}^{T} Y_{k} Y_{k}^{T} \\
& =-\left[C, Y_{k} Y_{k}^{T} B_{1}, Y_{k} Y_{k}^{T} B_{2}\right]\left[\begin{array}{c}
C^{T} \\
B_{1}^{T} Y_{k} Y_{k}^{T} \\
B_{2}^{T} Y_{k} Y_{k}^{T}
\end{array}\right] .
\end{aligned}
$$

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian H_{∞}-Control

Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems

Theorem [Cherfi/Abou-Kandil/Bourles 2005]
If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$,
b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \quad \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

- Conditions for initial guess make its computation difficult.
- Observed convergence is linear.

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems

Theorem [Cherfi/Abou-Kandil/Bourles 2005]
If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$, b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \quad \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

- Conditions for initial guess make its computation difficult.
- Observed convergence is linear.

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapuno and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian $H_{r a}$-Control

Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations
Numerical
example
Software
Conclusions and Open Problems

Theorem [Cherfi/Abou-Kandil/Bourles 2005]
If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$,
b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \quad \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

- Conditions for initial guess make its computation difficult.
- Observed convergence is linear.

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapuno and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessiar
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations
Numerical
example
Software
Conclusions and Open Problems

References

Theorem [Cherfi/Abou-Kandil/Bourles 2005]
If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$,
b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

- Conditions for initial guess make its computation difficult.
- Observed convergence is linear.

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessiar
$H_{r a}$-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations
Numerical
example
Software
Conclusions and Open Problems

References

Theorem [Cherfi/Abou-Kandil/Bourles 2005]
If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$,
b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \quad \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

- Conditions for initial guess make its computation difficult.
- Observed convergence is linear.

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessiar
$H_{r a}$-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems

References

Theorem [Cherfi/Abou-Kandil/Bourles 2005]
If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$,
b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \quad \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

- Conditions for initial guess make its computation difficult.
- Observed convergence is linear.

Lyapunov Iterations/Perturbed Hessian Approach

 ConvergenceADI for Lyapunov and Riccati

Peter Benner

Large-Scale
Matrix Equtions
ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example

Software
Conclusions and Open Problems

Theorem [Cherfi/Abou-Kandil/Bourles 2005]

If

- $\exists \hat{X}$ such that $\mathcal{R}(\hat{X}) \geq 0$,
- $\exists X_{0}=X_{0}^{\top} \geq \hat{X}$ such that $\mathcal{R}\left(X_{0}\right) \leq 0$ and $A-D X_{0}$ is Hurwitz, then
a) $X_{0} \geq \ldots \geq X_{k} \geq X_{k+1} \geq \ldots \geq \hat{X}$,
b) $\mathcal{R}\left(X_{k}\right) \leq 0$ for all $k=0,1, \ldots$,
c) $A-D X_{k}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\exists \lim _{k \rightarrow \infty} X_{k}=: \underline{X} \geq \hat{X}$,
e) \underline{X} is semi-stabilizing.

Main problems

■ Conditions for initial guess make its computation difficult.

- Observed convergence is linear.

Riccati Iterations

[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Idea
Consider

$$
A^{T} X+X A+C^{T} C+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=: \mathcal{R}(X) .
$$

Then

$$
\begin{aligned}
\mathcal{R}(X+Z)= & \mathcal{R}(X)+(\underbrace{A+\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X}_{=: \hat{A}})^{T} Z+Z \widehat{A} \\
& +Z\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) Z .
\end{aligned}
$$

Furthermore, if $X=X^{\top}, Z=Z^{\top}$ solve the standard ARE

$$
0=\mathcal{R}(X)+\widehat{A}^{\top} Z+Z \widehat{A}-Z B_{2} B_{2}^{\top} Z,
$$

then

$$
\mathcal{R}(X+Z)=Z B_{1} B_{1}^{\top} Z
$$

Riccati Iterations

[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Idea

Consider

$$
A^{T} X+X A+C^{T} C+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=: \mathcal{R}(X) .
$$

Then

$$
\begin{aligned}
\mathcal{R}(X+Z)= & \mathcal{R}(X)+(\underbrace{A+\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X}_{=: \hat{A}})^{T} Z+Z \widehat{A} \\
& +Z\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) Z .
\end{aligned}
$$

Furthermore, if $X=X^{T}, Z=Z^{T}$ solve the standard ARE

$$
0=\mathcal{R}(X)+\widehat{A}^{T} Z+Z \widehat{A}-Z B_{2} B_{2}^{T} Z
$$

then

$$
\begin{aligned}
\mathcal{R}(X+Z) & =Z B_{1} B_{1}^{T} Z \\
\|\mathcal{R}(X)\|_{2} & =\left\|B_{1}^{\top} Z\right\|_{2} .
\end{aligned}
$$

Riccati Iterations

[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Idea

Consider

$$
A^{T} X+X A+C^{T} C+X\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X=: \mathcal{R}(X) .
$$

Then

$$
\begin{aligned}
\mathcal{R}(X+Z)= & \mathcal{R}(X)+(\underbrace{A+\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X}_{=: \hat{A}})^{T} Z+Z \widehat{A} \\
& +Z\left(B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) Z .
\end{aligned}
$$

Furthermore, if $X=X^{T}, Z=Z^{T}$ solve the standard ARE

$$
0=\mathcal{R}(X)+\widehat{A}^{T} Z+Z \widehat{A}-Z B_{2} B_{2}^{T} Z
$$

then

$$
\begin{aligned}
\mathcal{R}(X+Z) & =Z B_{1} B_{1}^{T} Z \\
\|\mathcal{R}(X)\|_{2} & =\left\|B_{1}^{T} Z\right\|_{2} .
\end{aligned}
$$

Riccati iteration

1 Set $X_{0}=0$.
2. FOR $k=1,2, \ldots$,
(i) Set $A_{k}:=A+B_{1}\left(B_{1}^{T} X_{k}\right)-B_{2}\left(B_{2}^{T} X_{k}\right)$.
(ii) Solve the ARE

$$
\mathcal{R}\left(X_{k}\right)+A_{k}^{T} Z_{k}+Z_{k} A_{k}-Z_{k} B_{2} B_{2}^{T} Z_{k}=0
$$

(iii) Set $X_{k+1}:=X_{k}+Z_{k}$.
(iv) IF $\left\|B_{1}^{T} Z_{k}\right\|_{2}<$ tol THEN Stop.

Remark. ARE for $k=0$ is the standard LQR/ H_{2} ARE.

Riccati Iterations

[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Theorem [Lanzon/Feng/B.D.O. Anderson 2007]
If

- $\left(A, B_{2}\right)$ stabilizable,
$\square(A, C)$ has no unobservable purely imaginary modes, and
■ \exists stabilizing solution X_{-},
then
a) $\left(A+B_{1} B_{1}^{T} X_{k}, B_{2}\right)$ stabilizable for all $k=0,1, \ldots$,
b) $Z_{k} \geq 0$ for all $k=0,1, \ldots$,
c) $A+B_{1} B_{1}^{T} X_{k}-B_{2} B_{2}^{T} X_{k+1}$ is Hurwitz for all $k=0,1, \ldots$,
d) $\mathcal{R}\left(X_{k+1}\right)=Z_{k} B_{1} B_{1}^{T} Z_{k}$ for all $k=0,1, \ldots$,
e) $X_{-} \geq \ldots \geq X_{k+1} \geq X_{k} \geq \ldots \geq 0$.
f) If $\exists \lim _{k \rightarrow \infty} X_{k}=: \underline{X}$, then $\underline{X}=X_{-}$, and
g) convergence is locally quadratic.

AREs with
Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian
Approach
Riccati Iterations Numerical example Software

Conctusions and Open Problems References

Riccati iteration - low-rank version [B. 2008]

1 Solve the ARE

$$
C^{T} C+A^{T} Z_{0}+Z_{0} A-Z_{0} B_{2} B_{2}^{T} Z_{0}=0
$$

using Newton-ADI, yielding Y_{0} with $Z_{0} \approx Y_{0} Y_{0}^{T}$.
[2 Set $R_{1}:=Y_{0}$.

$$
\left\{\% R_{1} R_{1}^{T} \approx X_{1} .\right\}
$$

3 FOR $k=1,2, \ldots$,
(i) Set $A_{k}:=A+B_{1}\left(B_{1}^{T} R_{k}\right) R_{k}^{T}-B_{2}\left(B_{2}^{T} R_{k}\right) R_{k}^{T}$.
(ii) Solve the ARE

$$
Y_{k-1}\left(Y_{k-1}^{T} B_{1}\right)\left(B_{1}^{T} Y_{k-1}\right) Y_{k-1}^{T}+A_{k}^{T} Z_{k}+Z_{k} A_{k}-Z_{k} B_{2} B_{2}^{T} Z_{k}=0
$$

using Newton-ADI, yielding Y_{k} with $Z_{k} \approx Y_{k} Y_{k}^{T}$.
(iii) Set $R_{k+1}:=\operatorname{rrqr}\left(\left[R_{k}, Y_{k}\right], \tau\right)$.
$\left\{\% R_{k+1} R_{k+1}^{T} \approx X_{k+1}\right\}$
(iv) IF $\left\|\left(B_{1}^{T} Y_{k}\right) Y_{k}^{T}\right\|_{2}<$ tol THEN Stop.

AREs with Indefinite Hessian

Numerical example

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno

Newton-ADI for AREs

AREs with Indefinite Hessiar
H_{∞}-Control
Lyapunov Itera-
tions/Perturbed
Hessian
Approach
Riccati Iterations
Numerical example

- Trivial example $(n=2)$ from [Cherfi/Abou-Kandil/Bourles 2005].
- Compare convergence of Lyapunov and Riccati iterations.
$■$ Solution of standard AREs with Newton's method.

AREs with Indefinite Hessian

Numerical example

ADI for Lyapuno and Riccati Peter Benner

Large-Scale Matrix Equtions ADI for Lyapuno

Newton-ADI for AREs

AREs with Indefinite Hessian
H_{∞}-Control
Lyapunov Iterations/Perturbed Hessian Approach Riccati Iterations
Numerical example

Software

Conclusions and Open Problems

References

- Trivial example $(n=2)$ from [Cherfi/Abou-Kandil/Bourles 2005].

■ Compare convergence of Lyapunov and Riccati iterations.
■ Solution of standard AREs with Newton's method.

Software

Lyapack
[Penzl 2000]
Matlab toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs

AREs with
Indefinite Hessian
Software

Software

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

Lyapack
[Penzl 2000]
Matlab toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS - Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

- Extended and revised version of LyAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix.
- C version CMESS under development (Martin Köhler).

Software

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

Lyapack
[Penzl 2000]
Matlab toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS - Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

- Extended and revised version of LYAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix.
- C version CMESS under development (Martin Köhler).

Software

ADI for Lyapuno and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapuno
Newton-ADI for AREs

AREs with
Indefinite Hessian
Software
Conclusions and Open Problems

References

Lyapack
[Penzl 2000]
Matlab toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS - Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

- Extended and revised version of LyAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix.
- C version CMESS under development (Martin Köhler).

Conclusions and Open Problems

■ Galerkin projection can significantly accelerate ADI iteration for Lyapunov equations.
■ Low-rank Newton-ADI is a powerful and reliable method for solving large-scale AREs with semidefinite Hessian.

- Low-rank Galerkin-QADI may become a viable alternative to Newton-ADI.
- High-rank constant terms in ARE can be handled using quadrature rules.
- Software is available in Matlab toolbox Lyapack and its successor MESS.
- Low-rank Riccati iteration yields a reliable and efficient method for large-scale AREs with indefinite Hessian, useful, e.g., for H_{∞} optimization of PDE control problems.
- Low-rank Lyapunov iteration is an extremely simple variant for large-scale problems, but exhibits slower convergence and requires difficult-to-compute initial value.

Conclusions and Open Problems

- Galerkin projection can significantly accelerate ADI iteration for Lyapunov equations.
■ Low-rank Newton-ADI is a powerful and reliable method for solving large-scale AREs with semidefinite Hessian.
- Low-rank Galerkin-QADI may become a viable alternative to Newton-ADI.
- High-rank constant terms in ARE can be handled using quadrature rules.
- Software is available in Matlab toolbox Lyapack and its successor MESS.

■ Low-rank Riccati iteration yields a reliable and efficient method for large-scale AREs with indefinite Hessian, useful, e.g., for H_{∞} optimization of PDE control problems.

- Low-rank Lyapunov iteration is an extremely simple variant for large-scale problems, but exhibits slower convergence and requires difficult-to-compute initial value.
- To-Do list:
and Riccati
Peter Benner

Large-Scale
... for AREs with semidefinite Hessian:

- computation of stabilizing initial guess.
(If hierarchical grid structure is available, a multigrid approach is possible, other approaches based on "cheaper" matrix equations under development.)
- Implementation of coupled Riccati solvers for LQG controller design and balancing-related model reduction.

Conclusions and Open Problems

- To-Do list:
... for AREs with semidefinite Hessian:
- computation of stabilizing initial guess.
(If hierarchical grid structure is available, a multigrid approach is possible, other approaches based on "cheaper" matrix equations under development.)
- Implementation of coupled Riccati solvers for LQG controller design and balancing-related model reduction.
... for AREs with indefinite Hessian:
- Implement Riccati iteration in LyAPACK/MESS style.
- More numerical tests.
- Re-write Riccati iteration as feedback iteration.
- Efficient computation of initial value for Lyapunov iterations?
- \exists perturbed Hessian so that Lyapunov iteration quadratically convergent?

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions ADI for Lyapunov

Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

1 H.T. Banks and K. Ito.
A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems.
SIAM J. Cont. Optim., 29(3):499-515, 1991.
2 U. Baur and P. Benner.
Factorized solution of Lyapunov equations based on hierarchical matrix arithmetic.
Computing, 78(3):211-234, 2006.
3 P. Benner.
Solving large-scale control problems.
IEEE Control Systems Magazine, 14(1):44-59, 2004.
4 P. Benner.
Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems.
Logos-Verlag, Berlin, Germany, 1997.
Also: Dissertation, Fakultät für Mathematik, TU Chemnitz-Zwickau, 1997.
5 P. Benner.
Editorial of special issue on "Large-Scale Matrix Equations of Special Type".
Numer. Lin. Alg. Appl., 15(9):747-754, 2008.
6 P. Benner and R. Byers.
Step size control for Newton's method applied to algebraic Riccati equations.
In J.G. Lewis, editor, Proc. Fifth SIAM Conf. Appl. Lin. Alg., Snowbird, UT, pages 177-181. SIAM, Philadelphia, PA, 1994.

7 P. Benner and R. Byers.
An exact line search method for solving generalized continuous-time algebraic Riccati equations.
IEEE Trans. Automat. Control, 43(1):101-107, 1998.
8 P. Benner, J.-R. Li, and T. Penzl.
Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems.
Numer. Lin. Alg. Appl., 15(9):755-777, 2008.
Reprint of unpublished manuscript, December 1999.

ADI for Lyapunov and Riccati

Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADi for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

9 J. Borggaard and M. Stoyanov.
A reduced order solver for Lyapunov equations with high rank matrices
Proc. 18th Intl. Symp. Mathematical Theory of Network and Systems, MTNS 2008, 11 pages, 2008.
10 J. Burns, E. Sachs, and L. Zietsman.
Mesh independence of Kleinman-Newton iterations for Riccati equations on Hilbert space.
SIAM J. Control Optim., 47(5):2663-2692, 2008.
11 L. Cherfi, H. Abou-Kandil, and H. Bourles.
Iterative method for general algebraic Riccati equation.
Proc. ICGST Intl. Conf. Automatic Control and System Engineering, ACSE 2005, 19-21 December 2005, Cairo, Egypt.
12 T. Damm.
Rational Matrix Equations in Stochastic Control.
No. 297 in Lecture Notes in Control and Information Sciences.
Springer-Verlag, Berlin/Heidelberg, FRG, 2004.
13 J. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis.
State-space solutions to standard H_{2} and H_{∞} control problems.
IEEE Trans. Automat. Control, 34:831-847, 1989.
14 L. Grasedyck, W. Hackbusch, and B.N. Khoromskij.
Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing, 70:121-165, 2003.

15 C.-H. Guo and A.J. Laub.
On a Newton-like method for solving algebraic Riccati equations.
SIAM J. Matrix Anal. Appl., 21(2):694-698, 2000.
16 I.M. Jaimoukha and E.M. Kasenally.
Krylov subspace methods for solving large Lyapunov equations.
SIAM J. Numer. Anal., 31:227-251, 1994.
17 K. Jbilou.
Block Krylov subspace methods for large continuous-time algebraic Riccati equations.
Numer. Algorithms, 34:339-353, 2003.

References

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

18 K. Jbilou.
An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett., 19(5):437-444, 2006.

19 K. Jbilou. ADI preconditioned Krylov methods for large Lyapunov matrix equations. Preprint, 2008.

20 D.L. Kleinman.
On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control, AC-13:114-115, 1968.

21 P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press, Oxford, 1995.

22 A. Lanzon, Y. Feng, and B.D.O. Anderson. An iterative algorithm to solve algebraic Riccati equations with an indefinite quadratic term. Proc. European Control Conf., ECC 2007, July 2-5, 2007, Kos, Greece, Paper WeA13.4.

23 J.-R. Li and J. White.
Low rank solution of Lyapunov equations.
SIAM J. Matrix Anal. Appl., 24(1):260-280, 2002.
24 V. Mehrmann.
The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution.
Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.
25 T. Penzl.
A cyclic low rank Smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comput., 21(4):1401-1418, 2000.

References

ADI for Lyapunov and Riccati Peter Benner

Large-Scale Matrix Equtions

ADI for Lyapunov
Newton-ADI for AREs

AREs with Indefinite Hessian

Software
Conclusions and Open Problems

References

26 T. Penzl.
Lyapack Users Guide.
Technical Report SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, FRG, 2000.
Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.
27 Y. Saad.
Numerical Solution of Large Lyapunov Equation.
In M.A. Kaashoek, J.H. van Schuppen, and A.C.M. Ran, editors, Signal Processing, Scattering, Operator Theory and Numerical Methods, pages 503-511. Birkhäuser, Basel, 1990.

28 J. Saak, H. Mena, and P. Benner.
Matrix Equation Sparse Solvers (MESS): a Matlab Toolbox for the Solution of Sparse Large-Scale Matrix Equations.
In preparation.
29 V. Simoncini.
A new iterative method for solving large-scale Lyapunov matrix equations.
SIAM J. Sci. Comput., 29:1268-1288, 2007.
30 E.L. Wachspress.
Iterative solution of the Lyapunov matrix equation.
Appl. Math. Letters, 107:87-90, 1988.
31 K. Willcox and J. Peraire.
Balanced model reduction via the proper orthogonal decomposition. AIAA J., 40(11):2323, 2002.

32 N. Wong, V. Balakrishnan, C.-K. Koh, and T.S. Ng. Two algorithms for fast and accurate passivity-preserving model order reduction.
IEEE Trans. CAD Integr. Circuits Syst., 25(10):2062-2075, 2006.
33 N. Wong and V. Balakrishnan.
Fast positive-real balanced truncation via quadratic alternating direction implicit iteration.
IEEE Trans. CAD Integr. Circuits Syst., 26(9):1725-1731, 2007.

