Padé via Lanczos for multiple right-hand sides

Karl Meerbergen

Numerics for Control and Simulation

June 17, 2009

Karl Meerbergen (Numerics for Control and \$Padé via Lanczos for multiple right-hand side

Outline

(joint work with Zhaojun Bai)

Motivation

Fast alternatives

- Modal truncation
- AMLS
- Lanczos method

3 Further analysis

4 Numerical examples

Vibration problems

A car window is subjected to vibrations from outside, including wind. Glass manufacturers want to compute the transmission of noise through windscreens.

Fourier analysis

Solve

$$(K - \omega^2 M)x = f$$

with K, $M : n \times n$ sparse matrices, symmetric.

•
$$\omega \in \Omega = [\omega_{\min}, \omega_{\max}].$$

We also define $\Omega^2 = [\omega_{\min}^2, \omega_{\max}^2]$

• x is called the frequency response function.

Alternatives: modal truncation

• Consider the eigendecomposition

$$Ku_j = \lambda_j Mu_j$$

• The solution of $(K - \omega^2 M)x = f$ is

$$x = \sum_{j=1}^{n} u_j \frac{u_j^* f}{\lambda_j - \omega^2}$$

• Rational function with poles λ_j .

Alternative: modal truncation

Karl Meerbergen (Numerics for Control and \$Padé via Lanczos for multiple right-hand side

Alternative: AMLS

The solution of

$$(K - \omega^2 M)x = f$$

for $\omega \in \Omega$ is split into two parts.

- Let U_p = [u₁,..., u_p] be the eigenvectors corresponding to the eigenvalues in Ω².
- Solve the $p \times p$ problem

$$U_p^*(K-\omega^2 M)U_p z = U_p^* f$$

• Solve the remainder

$$(K - \omega^2 M)y = (I - MU_p U_p^*)f$$

• $x = U_p z + y$

Alternative: AMLS

• Preconditioner for the 'remainder' system :

$$(K - \sigma M)^{-1}$$

• Preconditioned system is

$$Ay = b$$

with

$$b = (I - MU_p U_p^*)(K - \sigma M)^{-1} f$$
$$A = (K - \sigma M)^{-1}(K - \omega^2 M)$$

 In AMLS [Bennighof & Kaplan, 1998], [Ko & Bai, 2007] K - σM is diagonal

Alternative: Lanczos process

- Use a Krylov method for solving Ay = b
- Since x*MAy = y*MAx, we use the Lanczos method with M inner product
- Lanczos method:
 - 1. Let $v_1 = b/\|b\|_M$
 - 2. For j = 1, ..., k
 - 2.1. Compute Krylov vector $v_{j+1} = Av_j$.
 - 2.2. Orthogonalize v_{j+1} against v_1, \ldots, v_j so that $v_{j+1}^* MV_j = 0$.
- Lanczos vectors $V_k = [v_1, \ldots, v_k]$.
- Recurrence relation: AV_k V_kT_k = β_kv_{k+1}e^{*}_k with T_k tridiagonal
 v = V_kT⁻¹_ke₁||b||_M

御下 不是下 不是下 一日

Shifted Lanczos method

Recall that

$$A = (K - \sigma M)^{-1}(K - \omega^2 M)$$

$$(K - \sigma M)^{-1}(K - \omega^2 M)V_k - V_k T_k = \beta_k v_{k+1} e_k^*$$

• V_k and T_k can be computed from the shifted Lanczos method.

$$(K - \sigma M)^{-1} M \tilde{V}_k - \tilde{V}_k \tilde{T}_k = \tilde{\beta}_k \tilde{v}_{k+1} e_k^*$$

• $V_k = \tilde{V}_k$ and $T_k = I + (\sigma - \omega^2)\tilde{T}_k$

Shifted linear systems

- Analyzed in the context of model reduction methods
- Feldman, Freund, Bai, Grimme, Sorensen, Van Dooren, Ruhe, Skoogh, Olsson, Simoncini, M., ...
- Connection with eigendecomposition
- Connection with iterative linear solvers
- Connection with rational approximation (Padé)
- Recycling Ritz vectors for parameterized systems: Kilmer & de Sturler 2006

Spectral analysis of deflated iterative method

- Let $B = A|_{\{U_p\}^{\perp_M}}$
- Black eigenvalues only: B is positive definite
- Eigenvalues of B clustered around 1
- spectral radius of I B is smaller than one .

Karl Meerbergen (Numerics for Control and \$Padé via Lanczos for multiple right-hand side

Inexact deflation

- Be careful for deflation with Ritz vectors [Darnell, Morgan, Wilcox 2007]
- Reason is that the system's residual need not be small

$$r(\omega) = R_p z_p + v_{k+1} \zeta_k$$

with R_p coming from deflation of Ritz vectors and v_{k+1} the residual term of the iterative method.

Eigenvalue solver

- Use Ritz pairs of the Lanczos method
 - Ritz values: $T_k z = \theta z$
 - Ritz vectors: $\hat{u} = V_k z$
- No exact eigenpairs
- But interesting properties as we now see:

Convergence of Ritz vectors

• Eigenvalues in Ω^2 are computed fairly accurately

$$\rho_j \le \frac{1}{|\lambda_j - \sigma|}$$

Methods

• DRHSL or init-CG

• Solve
$$U_p^T (K - \sigma M)^{-1} (K - \omega^2 M) U_p z = U_p^T f$$

- Compute Krylov space for $A = (K \sigma M)^{-1}M$ and $(I U_{\rho}U_{\rho}^{T}M)(K \sigma M)^{-1}f$
- Solve tridiagonal system
- Add the two components of the solution

OML

Solve
$$U_p^T (K - \sigma M)^{-1} (K - \omega^2 M) U_p z = U_p^T f$$

► Compute Krylov space for

$$B = (I - U_p U_p^T M)(K - \sigma M)^{-1} M (I - U_p U_p^T M) \text{ and}$$

$$(I - U_p U_p^T M)(K - \sigma M)^{-1} f$$
Project A op [U, V]

- Project A on $[U_p V_k]$
- In exact arithmetic both methods do the same thing
- DML is more expensive in operations and memory
- but may be more reliable since deflation is imposed explicitly

Padé via Lanczos

• Lanczos method:

$$\hat{x} = \sum_{j=1}^{k} \hat{u}_j \frac{\hat{u}_j^* f}{\hat{\lambda}_j - \omega^2}$$

- First k moments of x̂ and x match.
- With exact deflation:

$$\hat{\mathbf{x}} = \sum_{j=1}^{p} u_j \frac{u_j^* f}{\lambda_j - \omega^2} + \sum_{j=p+1}^{k} \hat{u}_j \frac{\hat{u}_j^* f}{\hat{\lambda}_j - \omega^2}$$

- First k p moments of \hat{x} and x match.
- Interpolation in the p deflated eigenvalues.

Applications

- AMLS frequency sweeping
- Multiple right-hand sides:
 - Parameterized Lanczos for right-hand side 1
 - Keep Ritz vectors
 - Recycle Ritz vectors for coming right-hand sides
- Changing σ : recycle Ritz vectors for new pole.

Windscreen

- Glaverbel-BMW windscreen
- grid : 3 layers of 60×30 HEX08 elements (n = 22, 692)
- $\Omega = [0, 100]$
- First run:
 - unit point force at one of the corners
 - Use Lanczos method with k = 20 vectors.
 - We keep the Ritz values in $[0, 2 \times 100^2]$: p = 14

Windscreen

- Second run with other right-hand side
 - Perform 6 additional Lanczos steps

- The largest $\kappa(\hat{B})$ is 1.9813.
- Six iterations reduce the error in the $M\hat{B}$ norm by $2 \cdot 10^{-5}$.

Acoustic cavity

- *n* = 48, 158
- Frequency range : [0, 10000]
- 202 right-hand sides
- matrix factorization: 8 seconds
- Lanczos method with 40 vectors: 6 seconds

Acoustic cavity (cont.)

- 2nd right-hand side: keep the 31 Ritz values in $[0, 2 \times 10.000^2]$.
- 9 additional Lanczos iterations recycling 31 Ritz vectors: 2 seconds

Multiple eigenvalues

- 3D Laplacian on a cube.
- 30 Lanczos iterations with first right-hand side
- Recycle 22 Ritz pairs
- Run 8 iterations with the second right-hand side

