Projected matrix equations and their application in model reduction of descriptor systems

Tatjana Stykel
DFG Research Center Matheon
Technische Universität Berlin

Mathematics for key technologies

Workshop on Numerics for Control and Simulation, Manchester, June 17, 2009

Matrix equations

Lyapunov equation

 $A X+X A^{T}=-G$
Sylvester equation $A X+X F=-G$

Bernoulli equation

$$
A X+X A^{T}-X Q X=0
$$

Riccati equation

$$
A X+X A^{T}-X Q X+G=0
$$

Lur'e equations

$$
\begin{aligned}
& A X+X A^{T}+G=-K K^{T} \\
& C X+H=-J^{T} K, R=J J^{T}
\end{aligned}
$$

Outline

- Projected Lyapunov equations
- Balanced truncation of descriptor systems
- Numerical solution (LR-ADI method)
- Projected Lur'e equations
- Passivity and positive real balanced truncation
- Contractivity and bounded real balanced truncation
- Projected Riccati equations
- Newton's method
- Numerical examples
- Summary

Lyapunov equations

A.M.Lyapunov, "The general problem of the stability of motion", 1892.

- $A X+X A^{T}=-G$ $(\operatorname{Re}(\lambda(A))<0)$
[Gantmacher'54, Daleckii/Krein'74, ...]
- $A X+X A^{T}=-P G P^{T}+(I-P) G(I-P)^{T}$
[Daleckii/Krein'74, Godunov'86] $\quad(\operatorname{Re}(\lambda(A)) \neq 0)$
- $A X E^{T}+E X A^{T}=-G \quad(E$ - nonsingular) [Owens/Debeljkovich'85, Chu'87, Larin'92, Penzl'98, ...]

A.M. Lyapunov 1857-1918

If E is singular, then $A X E^{T}+E X A^{T}=-G$ may have no solutions even if $\operatorname{Re}(\lambda(E, A))<0$

$$
\hookrightarrow \quad E=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad G=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

If solutions exist, they are always nonunique $\hookrightarrow X+v v^{T}, v \in \operatorname{ker} E$.

Generalized Lyapunov equations

- $A X E^{T}+E X A^{T}=-E G E^{T}$
[Lewis'85, Mazko'86, Ishihara/Terra'02]
- $A X+Y A^{T}=-G, E X=Y E^{T}$
($\lambda E-A$ of index 1)
[Takaba/Morihira/Katayama'95]
- $A X E^{T}+E X A^{T}=-P_{l} G P_{l}^{T}, X=P_{r} X P_{r}^{T}$
[St.'00,'02]
- $(a E+A) X\left(E-a^{2} A\right)^{T}+\left(E-a^{2} A\right) X(a E+A)^{T}=-G$
[Müller'04]
$\left(0<a<1 / b^{2},\left|\lambda_{j}(E, A)\right| \leq b\right)$

Weierstrass canonical form:

$$
E=T_{l}\left[\begin{array}{cc}
I & 0 \\
0 & N
\end{array}\right] T_{r}, \quad A=T_{l}\left[\begin{array}{cc}
A_{f} & 0 \\
0 & I
\end{array}\right] T_{r},
$$

where A_{f} - Jordan block ($\lambda_{j}\left(A_{f}\right)$ are finite eigenvalues of $\lambda E-A$),
N - nilpotent $\left(N^{\nu-1} \neq 0, N^{\nu}=0 \leadsto \nu\right.$ is index of $\left.\lambda E-A\right)$.

Projected Lyapunov equations

Consider the projected generalized Lyapunov equation

$$
A X E^{T}+E X A^{T}=-P_{l} G P_{l}^{T}, \quad X=P_{r} X P_{r}^{T}
$$

where

$$
P_{l}=T_{l}\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] T_{l}^{-1}, \quad P_{r}=T_{r}^{-1}\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] T_{r}
$$

Applications

- stability of the differential-algebraic equation $E \dot{x}(t)=A x(t)$
- inertia theory for the matrix pencil $\lambda E-A$
- control problems for $E \dot{x}(t)=A x(t)+B u(t), y(t)=C x(t)+D u(t)$ (controllability/observability, balancing, model reduction)

Descriptor systems

Time domain representation

where $E, A \in \mathbb{R}^{n, n}, \quad B \in \mathbb{R}^{n, m}, \quad C \in \mathbb{R}^{p, n}, \quad D \in \mathbb{R}^{p, m}$,
$u(t) \in \mathbb{R}^{m}$ - input, $x(t) \in \mathbb{R}^{n}$ - state, $y(t) \in \mathbb{R}^{p}$ - output.

Frequency domain representation
Laplace transform: $u(t) \mapsto \boldsymbol{u}(s), \quad y(t) \mapsto \boldsymbol{y}(s)$

$$
\begin{aligned}
\hookrightarrow \quad \boldsymbol{y}(s) & =\left(C(s E-A)^{-1} B+D\right) \boldsymbol{u}(s)+C(s E-A)^{-1} E x(0) \\
\boldsymbol{G}(s) & =C(s E-A)^{-1} B+D \text { is the transfer function }
\end{aligned}
$$

Model reduction problem

Given a large-scale system

$$
\begin{aligned}
E \dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

with $E, A \in \mathbb{R}^{n, n}, B \in \mathbb{R}^{n, m}$, $C \in \mathbb{R}^{p, n}, D \in \mathbb{R}^{p, m}, n \gg m, p$,
find a reduced-order system

$$
\begin{aligned}
\tilde{E} \dot{\tilde{x}}(t) & =\tilde{A} \tilde{x}(t)+\tilde{B} u(t), \\
\tilde{y}(t) & =\tilde{C} \tilde{x}(t)+\tilde{D} u(t)
\end{aligned}
$$

with $\tilde{E}, \tilde{A} \in \mathbb{R}^{\ell, \ell}, \tilde{B} \in \mathbb{R}^{\ell, m}$,
$\tilde{C} \in \mathbb{R}^{p, \ell}, \tilde{D} \in \mathbb{R}^{p, m}, \quad \ell \ll n$.

- preservation of system properties
- stability $\left(\lambda_{j}(E, A) \in \mathbb{C}^{-}\right)$
- passivity (= system does not generate energy)
- contractivity $\left(\|y\|_{\mathbb{L}_{2}} \leq\|u\|_{\mathbb{L}_{2}}\right)$
- small approximation error \Longrightarrow need for error bounds
$\hookrightarrow \quad\|\tilde{\boldsymbol{G}}-\boldsymbol{G}\| \leq t o l \quad$ or $\quad\|\tilde{y}-y\| \leq t o l \cdot\|u\|$ for all $u \in \mathcal{U}$
- numerically stable and efficient methods

Balanced truncation: $E=I$

- The controllability Gramian and the observability Gramian solve

$$
A \mathcal{G}_{c}+\mathcal{G}_{c} A^{T}=-B B^{T}, \quad A^{T} \mathcal{G}_{o}+\mathcal{G}_{o} A=-C^{T} C
$$

- System $\boldsymbol{G}=(A, B, C, D)$ is balanced, if $\mathcal{G}_{c}=\mathcal{G}_{o}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.
- $\sigma_{j}=\sqrt{\lambda_{j}\left(\mathcal{G}_{c} \mathcal{G}_{o}\right)}$ are the Hankel singular values

Idea: balance the system, i.e., find a state space transformation

$$
\begin{aligned}
(\hat{A}, \hat{B}, \hat{C}, \hat{D}) & =\left(T^{-1} A T, T^{-1} B, C T, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[C_{1}, C_{2}\right], D\right)
\end{aligned}
$$

such that $\hat{\mathcal{G}}_{c}=\hat{\mathcal{G}}_{o}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and truncate the states
corresponding to small $\sigma_{j} \hookrightarrow \widetilde{G}=\left(A_{11}, B_{1}, C_{1}, D\right)$

Generalized Gramians

$\boldsymbol{G}(s)=C(s E-A)^{-1} B+D=\boldsymbol{G}_{s p}(s)+\boldsymbol{P}(s)$,
where $\boldsymbol{G}_{s p}(s)=C_{1}\left(s I-A_{f}\right)^{-1} B_{1}$ is strictly proper and

$$
\boldsymbol{P}(s)=C_{2}(s N-I)^{-1} B_{2}+D=M_{0}+s M_{1}+\ldots+s^{\nu-1} M_{\nu-1} .
$$

- The proper Gramians $\mathcal{G}_{p c}$ and $\mathcal{G}_{p o}$ solve the projected generalized continuous-time Lyapunov equations

$$
\begin{array}{ll}
E \mathcal{G}_{p c} A^{T}+A \mathcal{G}_{p c} E^{T}=-P_{l} B B^{T} P_{l}^{T}, & \mathcal{G}_{p c}=P_{r} \mathcal{G}_{p c} P_{r}^{T}, \\
E^{T} \mathcal{G}_{p o} A+A^{T} \mathcal{G}_{p o} E=-P_{r}^{T} C^{T} C P_{r}, & \mathcal{G}_{p o}=P_{l}^{T} \mathcal{G}_{p o} P_{l} .
\end{array}
$$

- The improper Gramians $\mathcal{G}_{i c}$ and $\mathcal{G}_{i o}$ solve the projected generalized discrete-time Lyapunov equations

$$
\begin{array}{lll}
A \mathcal{G}_{i c} A^{T}-E \mathcal{G}_{i c} E^{T}=Q_{l} B B^{T} Q_{l}^{T}, & \mathcal{G}_{i c}=Q_{r} \mathcal{G}_{i c} Q_{r}^{T}, \\
A^{T} \mathcal{G}_{i o} A-E^{T} \mathcal{G}_{i o} E=Q_{r}^{T} C^{T} C Q_{r}, & \mathcal{G}_{i o}=Q_{l}^{T} \mathcal{G}_{i o} Q_{l},
\end{array}
$$

where $Q_{l}=I-P_{l}$ and $Q_{r}=I-P_{r}$.

Balanced truncation: E singular

- System $\boldsymbol{G}=(E, A, B, C, D)$ is balanced, if the Gramians satisfy

$$
\begin{aligned}
& \mathcal{G}_{p c}=\mathcal{G}_{p o}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n_{f}}, 0, \ldots, 0\right), \\
& \mathcal{G}_{i c}=\mathcal{G}_{i o}=\operatorname{diag}\left(0, \ldots, 0, \theta_{1}, \ldots, \theta_{n_{\infty}}\right) .
\end{aligned}
$$

- $\sigma_{j}=\sqrt{\lambda_{j}\left(\mathcal{G}_{p c} E^{T} \mathcal{G}_{p o} E\right)}$ are proper Hankel singular values $\theta_{j}=\sqrt{\lambda_{j}\left(\mathcal{G}_{i c} A^{T} \mathcal{G}_{i o} A\right)}$ are improper Hankel singular values

Idea: balance the system and truncate the states corresponding to small proper and zero improper Hankel singular values.

Example

$$
\begin{aligned}
N \dot{x}(t) & =x(t)+B u(t) \quad \text { with } \quad N=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
10 \\
0.1 \\
0
\end{array}\right], \quad C^{T}=\left[\begin{array}{c}
0.04 \\
30 \\
1
\end{array}\right]
\end{aligned}
$$

Improper Hankel singular values $\theta_{1}=3.4, \theta_{2}=4.7 \cdot 10^{-6}, \theta_{3}=0$

- Reduced-order system: $\quad \ell=2$

$$
\begin{aligned}
{\left[\begin{array}{rr}
1.2 & 1.2 \\
-1.2 & -1.2
\end{array}\right] \dot{\tilde{x}}(t) } & =\left[\begin{array}{cc}
10^{3} & 0 \\
0 & 10^{3}
\end{array}\right] \tilde{x}(t)+\tilde{B} u(t) \\
\tilde{y}(t) & =\tilde{C} \tilde{x}(t)
\end{aligned}
$$

Balanced truncation method

1. Compute

$$
\mathcal{G}_{p c}=R_{p} R_{p}^{T}, \quad \mathcal{G}_{p o}=L_{p} L_{p}^{T}, \quad \mathcal{G}_{i c}=R_{i} R_{i}^{T}, \quad \mathcal{G}_{i o}=L_{i} L_{i}^{T} ;
$$

2. Compute the SVD

$$
L_{p}^{T} E R_{p}=\left[U_{11}, U_{12}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[V_{11}, V_{12}\right]^{T} ;
$$

3. Compute the SVD

$$
L_{i}^{T} A R_{i}=\left[U_{21}, U_{22}\right]\left[\begin{array}{cc}
\Theta_{1} & \\
& 0
\end{array}\right]\left[\begin{array}{ll}
V_{21}, & V_{22}
\end{array}\right]^{T} ;
$$

4. $[\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}]=\left[W^{T} E T, W^{T} A T, W^{T} B, C T, D\right]$ with

$$
W=\left[L_{p} U_{11} \Sigma_{1}^{-1 / 2}, L_{i} U_{21} \Theta_{1}^{-1 / 2}\right], \quad T=\left[R_{p} V_{11} \Sigma_{1}^{-1 / 2}, R_{i} V_{21} \Theta_{1}^{-1 / 2}\right]
$$

Balanced truncation: properties

- $\tilde{E}=W^{T} E T=\left[\begin{array}{cc}I & 0 \\ 0 & \tilde{E}_{\infty}\end{array}\right], \quad \tilde{A}=W^{T} A T=\left[\begin{array}{cc}\tilde{A}_{f} & 0 \\ 0 & I\end{array}\right]$
- $\lambda \tilde{E}-\tilde{A}$ is regular and stable
- ($\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ is balanced
- $\tilde{\boldsymbol{G}}(s)-\boldsymbol{G}(s)$ is strictly proper
- Error bound:

$$
\|\tilde{y}-y\|_{\mathbb{L}_{2}} \leq\|\tilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathbb{H}_{\infty}}\|u\|_{\mathbb{L}_{2}} \leq 2\left(\sigma_{\ell_{f}+1}+\ldots+\sigma_{n_{f}}\right)\|u\|_{\mathbb{L}_{2}}
$$

Solving projected Lyapunov equations

$E \mathcal{G}_{p c} A^{T}+A \mathcal{G}_{p c} E^{T}=-P_{l} B B^{T} P_{l}^{T}, \quad \mathcal{G}_{p c}=P_{r} \mathcal{G}_{p c} P_{r}^{T}$
$\leadsto \mathcal{G}_{p c}=R_{p} R_{p}^{T}, R_{p} \in \mathbb{R}^{n, n}$ or $\mathcal{G}_{p c} \approx R R^{T}, R \in \mathbb{R}^{n, r}, r \ll n$
[\checkmark] Hammarling method
[Hammarling'82, Penzl'98, Kressner'06, \hookrightarrow medium/dense St.'02]
$[\checkmark]$ Sign function method \hookrightarrow large/dense
[Roberts'71, Byers'87, Larin/Aliev'93, ..., Benner/Quintana-Ortí'99, St.'07]
[\checkmark] ADI and Smith methods \hookrightarrow large/sparse
[Wachspress'88, Penzl'99, Li/White'02, Benner/Li/Penzl/'08, St.'08]
$[\checkmark]$ Krylov subspace methods \hookrightarrow large/sparse
[Saad'90, Jaimoukha/Kasenally'94]
Simoncini'06, Simoncini/St.'09]
[] ADI + global Arnoldi, ADI + Galerkin projection

Generalized ADI method

$$
\begin{gathered}
\left(E+\tau_{k} A\right) X_{k-1 / 2} A^{T}=-P_{l} B B^{T} P_{l}^{T}-A X_{k-1}\left(E-\tau_{k} A\right)^{T} \\
\left(E+\bar{\tau}_{k} A\right) X_{k}^{T} A^{T}=-P_{l} B B^{T} P_{l}^{T}-A X_{k-1 / 2}^{T}\left(E-\bar{\tau}_{k} A\right)^{T} \\
\Downarrow \quad X_{k}=R_{k} R_{k}^{T}
\end{gathered}
$$

Low-rank ADI method:

$$
\begin{aligned}
& Y_{1}=\sqrt{-2 \operatorname{Re}\left(\tau_{1}\right)}\left(E+\tau_{1} A\right)^{-1} P_{l} B, \quad R_{1}=Y_{1}, \\
& Y_{k}=\sqrt{\frac{\operatorname{Re}\left(\tau_{k}\right)}{\operatorname{Re}\left(\tau_{k-1}\right)}}\left(Y_{k-1}-\left(\bar{\tau}_{k-1}+\tau_{k}\right)\left(E+\tau_{k} A\right)^{-1} A Y_{k-1}\right), \\
& R_{k}=\left[\begin{array}{ll}
R_{k-1}, & Y_{k}
\end{array}\right]
\end{aligned}
$$

- sequence of low-rank factors $R_{k} \in \mathbb{R}^{n, k m}$ such that $R_{k}=P_{r} R_{k}$
- (sub)optimal shift parameters
[Penzl'98, Sabino'06, Benner et al.'08]
- solve $\left(E+\tau_{k} A\right) x=P_{l} b$

Computing the projectors

For computing the projectors P_{l} and P_{r} use the structure of E and A
$[\checkmark$] semi-explicit systems (index 1)

$$
E=\left[\begin{array}{cc}
E_{11} & E_{12} \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

$[\checkmark$] Stokes-like systems (index 2)

$$
E=\left[\begin{array}{cc}
E_{11} & 0 \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & 0
\end{array}\right]
$$

$[\checkmark$] mechanical systems (index 3)

$$
E=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & M & 0 \\
0 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & I & 0 \\
D & K & -G^{T} \\
G & 0 & 0
\end{array}\right]
$$

$[\checkmark$] electrical circuits (index 1 and 2)
Remark: For some problems the explicit computation of the projectors can be avoided [Heinkenschloss/Sorensen/Sun'08, Freitas/Rommes/Martins'08]

Lur'e equations

- (also Kalman-Yacubovich-Popov equations) [lonescu/Oara/Weiss'99, Phillips/Daniel/Silveira'03]

$$
\begin{aligned}
& A X+X A^{T}+G=-K K^{T}, \\
& C X+H=-J^{T} K, \quad R=J J^{T}
\end{aligned}
$$

- Projected Lur'e equations

A.I. Lur'e 1901-1980

$$
\begin{aligned}
& A X E^{T}+E X A^{T}+P_{l} G P_{l}^{T}=-K K^{T}, \quad X=P_{r} X P_{r}^{T} \\
& C X E^{T}+H P_{l}^{T}=-J K^{T}, \quad R=J J^{T}
\end{aligned}
$$

Applications

- passivity and positive real balanced truncation
- contractivity and bounded real balanced truncation

Passivity via Lur'e equations

(E, A, B, C, D) is passive (= does not generate energy)
$\Longleftrightarrow \boldsymbol{G}(s)=C(s E-A)^{-1} B+D$ is positive real, i.e.,
$\boldsymbol{G}(s)$ is analytic in \mathbb{C}^{+}and $\boldsymbol{G}(s)+\boldsymbol{G}^{T}(\bar{s}) \geq 0$ for all $s \in \mathbb{C}^{+}$
$\Longleftrightarrow \boldsymbol{G}(s)=\boldsymbol{G}_{s p}(s)+M_{0}+M_{1} s$, where $M_{1}=M_{1}^{T} \geq 0$ and the projected Lur'e equations

$$
\begin{gathered}
A X E^{T}+E X A^{T}=-K_{c} K_{c}^{T} \\
C X E^{T}-B^{T} P_{l}^{T}=-J_{c} K_{c}^{T} \\
X=P_{r} X P_{r}^{T}, M_{0}+M_{0}^{T}=J_{c} J_{c}^{T}
\end{gathered}
$$

$$
\begin{gathered}
A^{T} Y E+E^{T} Y A=-K_{o}^{T} K_{o} \\
B^{T} Y E-C P_{r}=-J_{o}^{T} K_{o} \\
Y=P_{l}^{T} Y P_{l}, M_{0}+M_{0}^{T}=J_{o}^{T} J_{o}
\end{gathered}
$$

are solvable for $X=X^{T} \geq 0, J_{c}, K_{c}$ and $Y=Y^{T} \geq 0, J_{o}, K_{o}$.
$\hookrightarrow 0 \leq X_{\min } \leq X \leq X_{\max }, \quad X_{\min }$ is positive real controllability Gramian
$0 \leq Y_{\min } \leq Y \leq Y_{\max }, \quad Y_{\min }$ is positive real observability Gramian

Conractivity via Lur'e equations

(E, A, B, C, D) is contractive $\quad\left(\|y\|_{\mathbb{L}_{2}} \leq\|u\|_{\mathbb{L}_{2}}\right)$
$\Longleftrightarrow \boldsymbol{G}(s)=C(s E-A)^{-1} B+D$ is bounded real, i.e.,
$\boldsymbol{G}(s)$ is analytic in \mathbb{C}^{+}and $I-\boldsymbol{G}(s) \boldsymbol{G}^{T}(\bar{s}) \geq 0$ for all $s \in \mathbb{C}^{+}$
$\Longleftrightarrow \boldsymbol{G}(s)=\boldsymbol{G}_{s p}(s)+M_{0}$ and the projected Lur'e equations

$$
\begin{gathered}
A X E^{T}+E X A^{T}+P_{l} B B^{T} P_{l}^{T}=-K_{c} K_{c}^{T} \\
C X E^{T}+M_{0} B^{T} P_{l}^{T}=-J_{c} K_{c}^{T} \\
X=P_{r} X P_{r}^{T}, I-M_{0} M_{0}^{T}=J_{c} J_{c}^{T}
\end{gathered}
$$

$$
\begin{gathered}
A^{T} Y E+E^{T} Y A+P_{r}^{T} C^{T} C P_{r}=-K_{o}^{T} K_{o} \\
B^{T} Y E+M_{0}^{T} C P_{r}=-J_{o}^{T} K_{o} \\
Y=P_{l}^{T} Y P_{l}, I-M_{0}^{T} M_{0}=J_{o}^{T} J_{o}
\end{gathered}
$$

are solvable for $X=X^{T} \geq 0, J_{c}, K_{c}$ and $Y=Y^{T} \geq 0, J_{o}, K_{o}$.
$\hookrightarrow 0 \leq X_{\min } \leq X \leq X_{\max }, \quad X_{\min }$ is bounded real controllability Gramian
$0 \leq Y_{\min } \leq Y \leq Y_{\max }, \quad Y_{\min }$ is bounded real observability Gramian

PR / BR balanced truncation method

- Compute $X_{\min }=R_{1} R_{1}^{T}, \quad Y_{\min }=L_{1} L_{1}^{T}$ (= solve Lur'e equations);
- Compute $\mathcal{G}_{i c}=R_{2} R_{2}^{T}, \mathcal{G}_{i o}=L_{2} L_{2}^{T}$ (= solve Lyapunov equations);
- Compute the SVD $\quad L_{1}^{T} E R_{1}=\left[U_{11}, U_{12}\right]\left[\begin{array}{ll}\Pi_{1} & \\ & \Pi_{2}\end{array}\right]\left[\begin{array}{ll}V_{11}, & V_{12}\end{array}\right]^{T}$;
- Compute the SVD $\quad L_{2}^{T} A R_{2}=\left[U_{21}, U_{22}\right]\left[\begin{array}{ll}\Theta_{1} & \\ & 0\end{array}\right]\left[V_{21}, V_{22}\right]^{T}$;
- Compute $\widetilde{\boldsymbol{G}}=\left[W^{T} E T, W^{T} A T, W^{T} B, C T, D\right]$ with $W=\left[L_{1} U_{11} \Pi_{1}^{-1 / 2}, L_{2} U_{21} \Theta_{1}^{-1 / 2}\right], \quad T=\left[R_{1} V_{11} \Pi_{1}^{-1 / 2}, R_{2} V_{21} \Theta_{1}^{-1 / 2}\right]$.

Properties

- Positive real balanced truncation
- $\widetilde{\boldsymbol{G}}=(\widetilde{E}, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D})$ is passive
- Error bound:

$$
\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\infty} \leq 2\left\|\left(M_{0}+M_{0}^{T}\right)^{-1}\right\|\left\|\boldsymbol{G}+M_{0}^{T}\right\|_{\infty}\left\|\widetilde{\boldsymbol{G}}+M_{0}^{T}\right\|_{\infty} \sum_{j=\ell_{f}+1}^{n_{f}} \pi_{j}
$$

- Bounded real balanced truncation
- $\widetilde{G}=(\widetilde{E}, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D})$ is contractive
- Error bound: $\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\infty} \leq 2\left(\pi_{\ell_{f}+1}+\ldots+\pi_{n_{f}}\right)$

Solving projected Lur'e equations

$$
\begin{aligned}
& A X E^{T}+E X A^{T}+P_{l} B B^{T} P_{l}^{T}=-K K^{T}, \quad X=P_{r} X P_{r}^{T}, \\
& C X E^{T}+H P_{l}^{T}=-J K^{T}, \quad R=J J^{T}
\end{aligned}
$$

- R - nonsingular \Longrightarrow projected Riccati equation
$A X E^{T}+E X A^{T}+P_{l} B B^{T} P_{l}^{T}+\left(C X E^{T}+H P_{l}^{T}\right)^{T} R^{-1}\left(C X E^{T}+H P_{l}^{T}\right)=0$,
$X=P_{r} X P_{r}^{T}$
$[\checkmark$] Newton's method
[Benner/St.'08]
$[\checkmark$] Generalized Hamiltonian eigenvalue problem
[] Krylov subspace methods [Jaimoukha/Kasenally'94, Benner'97, ..., Jbilou'06,09]
- R - singular
- small/dense problems: reduce to the Riccati equation of smaller dimension
[Weiss/Wang/Speyer'94]
- large/sparse problems - ?

Newton's method

$\mathcal{R}(X)=A X E^{T}+E X A^{T}+E X C^{T} C X E^{T}+P_{l} B B^{T} P_{l}^{T}=0, \quad X=P_{r} X P_{r}^{T}$

- Let $\mathbb{S}_{P}=\left\{X \in \mathbb{R}^{n, n}: X=X^{T}, X=P X P^{T}\right\}$ for a projector P.

Frechét derivative of $\mathcal{R}: \mathbb{S}_{P_{r}} \rightarrow \mathbb{S}_{P_{l}}$ at X is given by

$$
\mathcal{R}_{X}^{\prime}(Z)=\left(A+E X C^{T} C P_{r}\right) Z E+E Z\left(A+E X C^{T} C P_{r}\right)^{T}
$$

- Newton's method: $\quad X_{k+1}=X_{k}-\left(\mathcal{R}_{X_{k}}^{\prime}\right)^{-1}\left(\mathcal{R}\left(X_{k}\right)\right)$.

FOR $k=0,1,2, \ldots$

- Compute $K_{k}=E X_{k} C^{T}$ and $A_{k}=A+K_{k} C P_{r}$
- Solve the projected Lyapunov equation

$$
A_{k} Z_{k} E^{T}+E Z_{k} A_{k}^{T}=-P_{l} \mathcal{R}\left(X_{k}\right) P_{l}^{T}, \quad Z_{k}=P_{r} Z_{k} P_{r}^{T}
$$

- Compute $X_{k+1}=X_{k}+Z_{k}$. END FOR

Newton's method: properties

- $\lambda E-A_{k}$ are stable and $X_{k}=P_{r} X_{k} P_{r}^{T}$
- $\lim _{k \rightarrow \infty} \mathcal{R}\left(X_{k}\right)=0$
- $\lim _{k \rightarrow \infty} X_{k}=X_{\text {min }}$
(quadratically if $\lambda E-\left(A-E X_{\min } C^{T} C P_{r}\right)$ is stable)
- solve projected Lyapunov equations via the generalized ADI method $\hookrightarrow\left(E+\tau A_{k}\right)^{-1}=\left((E+\tau A)-\left(\tau K_{k}\right)\left(C P_{r}\right)\right)^{-1}$ is required
\hookrightarrow use "sparse + low-rank" structure of $E+\tau A_{k}$ and the Sherman-Morrison-Woodbury formula

$$
\left(E+\tau A_{k}\right)^{-1}=\hat{A}^{-1}+\tau \hat{A}^{-1} K_{k}\left(I_{p}-\tau C P_{r} \hat{A}^{-1} K_{k}\right)^{-1} C P_{r} \hat{A}^{-1}
$$

with sparse $\hat{A}=E+\tau A$

- computing the approximate factored solution $X_{\min } \approx R_{k} R_{k}^{T}$ is possible using the generalized LR-ADI method

RC circuit: index 1 - PRBT

- $n=2007, m=3, p=3 \quad \Longrightarrow \quad \ell=42$

Frequency responses

Stokes equation: index 2-BT

- $n=29799, m=5, p=5$
- $\mathcal{G}_{p c} \approx \tilde{R}_{p} \tilde{R}_{p}^{T}, \quad \tilde{R}_{p} \in \mathbb{R}^{n, 120}$
- $\mathcal{G}_{p o} \approx \tilde{L}_{p} \tilde{L}_{p}^{T}, \quad \tilde{L}_{p} \in \mathbb{R}^{n, 135}$
- Reduced system: $\ell=23$

Frequency responses

Mechanical system: index 3 - BRBT

- $n=60001, m=p=1 \quad \Longrightarrow \quad \ell=20$

	\# Newton	$\\|\mathcal{R}(X)\\| /\left\\|P G P^{T}\right\\|_{F}$	\# LR-ADI	rank	CPU (sec.)
$X_{\min }$	3	$6.71 \cdot 10^{-9}$	16	19	93.14
$Y_{\min }$	2	$8.74 \cdot 10^{-8}$	18	17	63.52

Summary and open problems

- Projected matrix equations (Lyapunov, Lur'e, Riccati) are useful tools in control problems for descriptor systems
- stability
- passivity (Positive Real Lemma)
- contractivity (Bounded Real Lemma)
- balancing-related model reduction
- Projectors P_{l} and P_{r} are required \Rightarrow use the structure of E, A
- Implementation of the solvers for large-scale projected matrix equations will be included (hopefully soon) in MATLAB Toolbox MESS-Matrix Equations Sparse Solvers [Saak/Mena/Benner]

Open problems

- Numerical solution of large-scale projected Lur'e equations
- Computation of stabilizing initial guess in Newton's method for large-scale projected Riccati equations

