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Sparse Direct Solvers

Solve
Ax = b

where A is Sparse.

Direct Methods Factorize A = LU, solve Ly = b,Ux = y .
Black-box, robust, compute-bound.
Memory-hungry⇒ slow for large matrices?.

Iterative Methods CG, GMRES, BiCGStab, etc.
Matrix-free. Fast? Efficient? memory-bound.
Non-robust, performance depends on preconditioner.
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Solve
Ax = b

where A is Sparse.

New view: Spectrum

Unpreconditioned
Iterative

Pure
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ILU(0) HSSAINV
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“HPC”? “MATLAB”?
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Horses for Courses
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Challenge #1: “Small” + Parallel

We need to achieve strong scaling.

Example
Non-linear optimization solver, unknown problem origin
⇒ Preconditioning difficult (at best)!

Direct solver: solves 100 systems (n = 35000) to reach solution in
5 seconds. 95% of time in linear solver.
⇒ 0.05s per serial factorization
Maybe 2 million flops with 250,000 non-zeroes (8 flops/non-zero)

2015 desktop: 16 CPU cores + 1024 GPU cores?
⇒ Fewer than 250 non-zeroes per core!
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Challenge #1: “Small” + Parallel

We need to achieve strong scaling.

8 flops/non-zero ⇒ Communication is King!
Work by Laura Grigori, Jim Demmel and others:
Communication avoiding algorithms

A small world:
Avoid fine-grained communication — latency hurts.
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Challenge #1: “Small” + Parallel

We need to achieve strong scaling.

8 flops/non-zero ⇒ Communication is King!
Work by Laura Grigori, Jim Demmel and others:
Communication avoiding algorithms

A small world:
Avoid fine-grained communication — latency hurts.

Assume flops are (almost) free: what can we do?

I Generic compression [bandwidth]

I Low-rank approximation (HSS preconditioning) [bandwidth]

I Speculative assumptions on numerical stability [latency]
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Generic Compression

J.D. Hogg and J.A. Scott
A note on the solve phase of a multicore solver
RAL-TR-2010-007

Idea:
Compress data blocks before storing factors, decompress into cache
before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, much
faster.

Outcome:
Performance matched that of original algorithm:
Wait for more flops/unit bandwidth.
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Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:
Communicate low rank approximations not large dense matrices

Rank-revealing QR:

U

V T

= A
Flops are

cheap!

Outcome:
Good preconditioner for some classes of matrix.
More work needed!
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Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.

Idea:
Assume no pivoting is needed; don’t do pivoting.

More Advanced Idea:
Put large entries on subdiagonal; only do local pivoting.

Outcome:
Works for majority of matrices.
But: Not for some difficult matrices — what direct solvers are for!
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Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Sparse Direct Primer:
Organises into tree of dense linear algebra + sparse scatters

15

6

3

1 2

4 5

14

9

7 8

13

12

10 11

Factorize blue.
Apply inverse
to green.
Form red outer
product.
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Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Sparse Direct Primer:
Organises into tree of dense linear algebra + sparse scatters
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Restrict pivoting
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Control green
growth.
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Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Observations:

I Want to start factorization of diagonal block before rest of
column is ready.

I Even for difficult matrices, delayed pivots generally restricted
to few subtrees.

I Assume pivoting will work; backtrack if it doesn’t.

I Achieve the best of both worlds?
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Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Otherwise:

I Currently test 1× 1 and 2× 2 pivots

I Use larger block pivots?

I Sparse analog to tournament pivoting?
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Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2
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Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

Why would we not do this?

I If we don’t, answers are still equally valid

I Less efficient: restrict parallelism, optimization

I More difficult to achieve

I Must be achieved by all libraries used
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Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

But it’s very attractive

I Hard to debug without it: make it an option?

I Confuses non-expert users no end

I Methods built on top may behave unexpectedly:

e.g. Different local maxima found for non-linear optimization
Different iteration counts
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Achieving bit-compatibility

Option #1: Add up in the same order
J.D. Hogg and J.A. Scott, HSL MA97
Enforce ordering on additions:

((1 + 2) + 3) + 4 or (1 + 2) + (3 + 4).

Option #2: Add up in high precision
Use quad or double-double precision to store intermediate results
Ideally requires sufficient cache to hold intermediate results.
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Task-based

Sparse task-based implementation exist: HSL MA86, HSL MA87,
PaStiX.

Problems:

I Block alignments — need dynamic reblocking for best
efficiency.

I Building on top of LAPACK/PLASMA — dynamic reblocking
on same data desirable.

I Building on top of LAPACK/PLASMA — can we use the
same task scheduler?

I Dynamic task sizing — splitting/merging across levels.

I Bit-compatibility?
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Supernodal method
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Supernodal method
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Tasking

I Each task may have its own way of blocking.

I Run in parallel — different optimal block sizes.

I Want to compose libraries.
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Summary

“Direct” Methods Still required:

I Black-box solution

I Small problems

I Numerically difficult problems

Challenges:

1. Small + Parallel (strong scaling)

2. Accurate + Parallel (communication avoiding pivoting)

3. Bit-compatiblity (software/user education)

4. Interface to rest of software stack (up and down)
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But iterative methods
aren’t perfect either...
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Iterative methods challenges

If Matrix-vector product is main cost:

I Already Memory-bound

I Look for ways to use spare cycles ⇒ More expensive
preconditioning?

I 2 or 4 M-v product not much more expensive than 1 M-v.
Can you exploit this?

Existing Efforts:

I Mark Hoemmen (Berkeley),
Communication Avoiding Krylov Methods

I Computes [v ,Av ,A2v , ...,Asv ] simultaneously

I Uses QR for orthogonalize

I Need to use Chebyshev basis for stability
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Thank you!
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