Challenges in Parallel Sparse Direct Linear Solvers

Jonathan Hogg

STFC Rutherford Appleton Laboratory
Perspectives on Parallel Numerical Linear Algebra 18th July 2012

Sparse Direct Solvers

Solve

$$
A x=b
$$

where A is Sparse.
Direct Methods Factorize $A=L U$, solve $L y=b, U x=y$. Black-box, robust, compute-bound. Memory-hungry \Rightarrow slow for large matrices?.
Iterative Methods CG, GMRES, BiCGStab, etc.
Matrix-free. Fast? Efficient? memory-bound.
Non-robust, performance depends on preconditioner.

Sparse Direct Solvers

Solve

$$
A x=b
$$

where A is Sparse.
New view: Spectrum

Sparse Direct Solvers

Solve

$$
A x=b
$$

where A is Sparse.
New view: Spectrum

Horses for Courses

Horses for Courses

Horses for Courses

Horses for Courses

Challenge \#1: "Small" + Parallel

We need to achieve strong scaling.

Example

Non-linear optimization solver, unknown problem origin
\Rightarrow Preconditioning difficult (at best)!
Direct solver: solves 100 systems $(n=35000)$ to reach solution in 5 seconds. 95\% of time in linear solver.
$\Rightarrow 0.05 \mathrm{~s}$ per serial factorization
Maybe 2 million flops with 250,000 non-zeroes (8 flops/non-zero)
2015 desktop: 16 CPU cores +1024 GPU cores?
\Rightarrow Fewer than 250 non-zeroes per core!

Challenge \#1: "Small" + Parallel

We need to achieve strong scaling.
8 flops/non-zero \Rightarrow Communication is King!
Work by Laura Grigori, Jim Demmel and others:
Communication avoiding algorithms
A small world:
Avoid fine-grained communication - latency hurts.

Challenge \#1: "Small" + Parallel

We need to achieve strong scaling.
8 flops/non-zero \Rightarrow Communication is King!
Work by Laura Grigori, Jim Demmel and others:
Communication avoiding algorithms
A small world:
Avoid fine-grained communication - latency hurts.
Assume flops are (almost) free: what can we do?

- Generic compression [bandwidth]
- Low-rank approximation (HSS preconditioning) [bandwidth]
- Speculative assumptions on numerical stability [latency]

Generic Compression

J.D. Hogg and J.A. Scott

A note on the solve phase of a multicore solver RAL-TR-2010-007

Idea:

Compress data blocks before storing factors, decompress into cache before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, much faster.

Generic Compression

J.D. Hogg and J.A. Scott

A note on the solve phase of a multicore solver
RAL-TR-2010-007

Idea:

Compress data blocks before storing factors, decompress into cache before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, much faster.

Outcome:

Performance matched that of original algorithm:
Wait for more flops/unit bandwidth.

Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:

Communicate low rank approximations not large dense matrices
Rank-revealing QR:

Flops are cheap!

Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:

Communicate low rank approximations not large dense matrices
Rank-revealing QR:

Flops are cheap!

Outcome:

Good preconditioner for some classes of matrix. More work needed!

Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.
Idea:
Assume no pivoting is needed; don't do pivoting.

Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.
Idea:
Assume no pivoting is needed; don't do pivoting.
More Advanced Idea:
Put large entries on subdiagonal; only do local pivoting.

Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.
Idea:
Assume no pivoting is needed; don't do pivoting.
More Advanced Idea:
Put large entries on subdiagonal; only do local pivoting.

Outcome:

Works for majority of matrices.
But: Not for some difficult matrices - what direct solvers are for!

Challenge \#2: Numerically difficult + Parallel

Need to do pivoting for stability - in parallel.

Sparse Direct Primer:

Organises into tree of dense linear algebra + sparse scatters

Factorize blue. Apply inverse to green.
Form red outer product.

Challenge \#2: Numerically difficult + Parallel

Need to do pivoting for stability - in parallel.

Sparse Direct Primer:

Organises into tree of dense linear algebra + sparse scatters

Factorize blue. Apply inverse to green.
Form red outer product.

Challenge \#2: Numerically difficult + Parallel

Need to do pivoting for stability - in parallel.

Sparse Direct Primer:

Organises into tree of dense linear algebra + sparse scatters
 to blue.
Control green growth.

Challenge \#2: Numerically difficult + Parallel

Need to do pivoting for stability - in parallel.

Observations:

- Want to start factorization of diagonal block before rest of column is ready.
- Even for difficult matrices, delayed pivots generally restricted to few subtrees.
- Assume pivoting will work; backtrack if it doesn't.
- Achieve the best of both worlds?

Challenge \#2: Numerically difficult + Parallel

Need to do pivoting for stability - in parallel.
Otherwise:

- Currently test 1×1 and 2×2 pivots
- Use larger block pivots?
- Sparse analog to tournament pivoting?

Challenge \#3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

$$
1+(\epsilon / 2+\epsilon / 2) \neq(1+\epsilon / 2)+\epsilon / 2
$$

Challenge \#3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

$$
1+(\epsilon / 2+\epsilon / 2) \neq(1+\epsilon / 2)+\epsilon / 2
$$

Why would we not do this?

- If we don't, answers are still equally valid
- Less efficient: restrict parallelism, optimization
- More difficult to achieve
- Must be achieved by all libraries used

Challenge \#3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

$$
1+(\epsilon / 2+\epsilon / 2) \neq(1+\epsilon / 2)+\epsilon / 2
$$

But it's very attractive

- Hard to debug without it: make it an option?
- Confuses non-expert users no end
- Methods built on top may behave unexpectedly:
e.g. Different local maxima found for non-linear optimization Different iteration counts

Achieving bit-compatibility

Option \#1: Add up in the same order J.D. Hogg and J.A. Scott, HSL_MA97

Enforce ordering on additions:

$$
((1+2)+3)+4 \quad \text { or } \quad(1+2)+(3+4)
$$

Option \#2: Add up in high precision Use quad or double-double precision to store intermediate results Ideally requires sufficient cache to hold intermediate results.

Task-based

Sparse task-based implementation exist: HSL_MA86, HSL_MA87, PaStiX.

Problems:

- Block alignments - need dynamic reblocking for best efficiency.
- Building on top of LAPACK/PLASMA — dynamic reblocking on same data desirable.
- Building on top of LAPACK/PLASMA - can we use the same task scheduler?
- Dynamic task sizing - splitting/merging across levels.
- Bit-compatibility?

Supernodal method

Supernodal method

Supernodal method

Supernodal method

Supernodal method

Tasking

- Each task may have its own way of blocking.
- Run in parallel - different optimal block sizes.
- Want to compose libraries.

Summary

"Direct" Methods Still required:

- Black-box solution
- Small problems
- Numerically difficult problems

Challenges:

1. Small + Parallel (strong scaling)
2. Accurate + Parallel (communication avoiding pivoting)
3. Bit-compatiblity (software/user education)
4. Interface to rest of software stack (up and down)

But iterative methods aren't perfect either...

Iterative methods challenges

If Matrix-vector product is main cost:

- Already Memory-bound
- Look for ways to use spare cycles \Rightarrow More expensive preconditioning?
- 2 or $4 \mathrm{M}-\mathrm{v}$ product not much more expensive than $1 \mathrm{M}-\mathrm{v}$. Can you exploit this?

Iterative methods challenges

If Matrix-vector product is main cost:

- Already Memory-bound
- Look for ways to use spare cycles \Rightarrow More expensive preconditioning?
- 2 or $4 \mathrm{M}-\mathrm{v}$ product not much more expensive than $1 \mathrm{M}-\mathrm{v}$. Can you exploit this?

Existing Efforts:

- Mark Hoemmen (Berkeley), Communication Avoiding Krylov Methods
- Computes $\left[v, A v, A^{2} v, \ldots, A^{s} v\right.$] simultaneously
- Uses QR for orthogonalize
- Need to use Chebyshev basis for stability

Thank you!

