

Challenges in Parallel Sparse Direct Linear Solvers

Jonathan Hogg

STFC Rutherford Appleton Laboratory

Perspectives on Parallel Numerical Linear Algebra 18th July 2012

Sparse Direct Solvers

Solve

$$Ax = b$$

where A is Sparse.

Direct Methods Factorize A = LU, solve Ly = b, Ux = y. Black-box, robust, **compute-bound**. Memory-hungry \Rightarrow slow for large matrices?. Iterative Methods CG, GMRES, BiCGStab, etc. Matrix-free. Fast? Efficient? memory-bound. Non-robust, performance depends on preconditioner.

Sparse Direct Solvers

Solve

$$Ax = b$$

where A is Sparse.

New view: Spectrum

Sparse Direct Solvers

Solve

$$Ax = b$$

where A is Sparse.

New view: Spectrum

Challenge #1: "Small" + Parallel

We need to achieve strong scaling.

Example

Non-linear optimization solver, unknown problem origin

 \Rightarrow Preconditioning difficult (at best)!

Direct solver: solves 100 systems (n = 35000) to reach solution in 5 seconds. 95% of time in linear solver.

 \Rightarrow 0.05s per serial factorization

Maybe 2 million flops with 250,000 non-zeroes (8 flops/non-zero)

2015 desktop: 16 CPU cores + 1024 GPU cores?

 \Rightarrow Fewer than 250 non-zeroes per core!

Challenge #1: "Small" + Parallel

We need to achieve strong scaling.

8 flops/non-zero \Rightarrow Communication is King! Work by *Laura Grigori*, *Jim Demmel* and others: Communication avoiding algorithms

A small world: Avoid fine-grained communication — latency hurts.

Challenge #1: "Small" + Parallel

We need to achieve strong scaling.

8 flops/non-zero \Rightarrow Communication is King! Work by *Laura Grigori*, *Jim Demmel* and others: Communication avoiding algorithms

A small world:

Avoid fine-grained communication — latency hurts.

Assume flops are (almost) free: what can we do?

- Generic compression [bandwidth]
- Low-rank approximation (HSS preconditioning) [bandwidth]
- Speculative assumptions on numerical stability [latency]

Generic Compression

J.D. Hogg and J.A. Scott A note on the solve phase of a multicore solver RAL-TR-2010-007

Idea:

Compress data blocks before storing factors, decompress into cache before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, *much* faster.

Generic Compression

J.D. Hogg and J.A. Scott A note on the solve phase of a multicore solver RAL-TR-2010-007

Idea:

Compress data blocks before storing factors, decompress into cache before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, *much* faster.

Outcome:

Performance matched that of original algorithm: Wait for more flops/unit bandwidth.

Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:

Communicate low rank approximations not large dense matrices

Rank-revealing QR:

Flops are cheap!

Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:

Communicate low rank approximations not large dense matrices

Rank-revealing QR:

Flops are cheap!

Outcome:

Good *preconditioner* for some classes of matrix. More work needed!

Speculative assumptions on numerical stability

PARDISO: *O. Schenk* et al. Static pivoting, weighted matchings: *I.S. Duff* and others.

Idea:

Assume no pivoting is needed; don't do pivoting.

Speculative assumptions on numerical stability

PARDISO: *O. Schenk* et al. Static pivoting, weighted matchings: *I.S. Duff* and others.

Idea:

Assume no pivoting is needed; don't do pivoting.

More Advanced Idea:

Put large entries on subdiagonal; only do local pivoting.

Speculative assumptions on numerical stability

PARDISO: *O. Schenk* et al. Static pivoting, weighted matchings: *I.S. Duff* and others.

Idea:

Assume no pivoting is needed; don't do pivoting.

More Advanced Idea:

Put large entries on subdiagonal; only do local pivoting.

Outcome:

Works for majority of matrices.

But: Not for some *difficult* matrices — what direct solvers are for!

Challenges in Parallel Sparse Direct Linear Solvers

Challenge #2: Numerically difficult + Parallel

Need to do **pivoting** for stability — in parallel.

Sparse Direct Primer:

Organises into tree of dense linear algebra + sparse scatters

Challenges in Parallel Sparse Direct Linear Solvers

Challenge #2: Numerically difficult + Parallel

Need to do **pivoting** for stability — in parallel.

Sparse Direct Primer:

Organises into tree of dense linear algebra + sparse scatters

Challenges in Parallel Sparse Direct Linear Solvers

Challenge #2: Numerically difficult + Parallel

Need to do **pivoting** for stability — in parallel.

Sparse Direct Primer:

Organises into tree of dense linear algebra + sparse scatters

Challenge #2: Numerically difficult + Parallel

Need to do **pivoting** for stability — in parallel.

Observations:

- Want to start factorization of diagonal block *before* rest of column is ready.
- Even for difficult matrices, delayed pivots generally restricted to few subtrees.
- Assume pivoting will work; backtrack if it doesn't.
- Achieve the best of both worlds?

Challenge #2: Numerically difficult + Parallel

Need to do **pivoting** for stability — in parallel.

Otherwise:

- Currently test 1×1 and 2×2 pivots
- Use larger block pivots?
- Sparse analog to tournament pivoting?

Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

$$1 + (\epsilon/2 + \epsilon/2) \neq (1 + \epsilon/2) + \epsilon/2$$

Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

$$1 + (\epsilon/2 + \epsilon/2) \neq (1 + \epsilon/2) + \epsilon/2$$

Why would we not do this?

- If we don't, answers are still equally valid
- Less efficient: restrict parallelism, optimization
- More difficult to achieve
- Must be achieved by all libraries used

Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

$$1 + (\epsilon/2 + \epsilon/2) \neq (1 + \epsilon/2) + \epsilon/2$$

But it's very attractive

- Hard to debug without it: make it an option?
- Confuses non-expert users no end
- Methods built on top may behave unexpectedly:
 - e.g. Different local maxima found for non-linear optimization Different iteration counts

Achieving bit-compatibility

Option #1: Add up in the same order *J.D. Hogg and J.A. Scott*, **HSL_MA97** Enforce ordering on additions:

((1+2)+3)+4 or (1+2)+(3+4).

Option #2: Add up in high precision

Use quad or double-double precision to store intermediate results Ideally requires sufficient cache to hold intermediate results.

Task-based

Sparse task-based implementation *exist*: HSL_MA86, HSL_MA87, PaStiX.

Problems:

- Block alignments need dynamic reblocking for best efficiency.
- Building on top of LAPACK/PLASMA dynamic reblocking on same data desirable.
- Building on top of LAPACK/PLASMA can we use the same task scheduler?
- Dynamic task sizing splitting/merging across levels.
- Bit-compatibility?

Tasking

- Each task may have its own way of blocking.
- Run in parallel different optimal block sizes.
- Want to compose libraries.

Summary

"Direct" Methods Still required:

- Black-box solution
- Small problems
- Numerically difficult problems

Challenges:

- 1. Small + Parallel (strong scaling)
- 2. Accurate + Parallel (communication avoiding pivoting)
- 3. Bit-compatiblity (software/user education)
- 4. Interface to rest of software stack (up and down)

But iterative methods aren't perfect either...

Iterative methods challenges

If Matrix-vector product is main cost:

- Already Memory-bound
- ► Look for ways to use spare cycles ⇒ More expensive preconditioning?
- 2 or 4 M-v product not much more expensive than 1 M-v. Can you exploit this?

Iterative methods challenges

If Matrix-vector product is main cost:

- Already Memory-bound
- ► Look for ways to use spare cycles ⇒ More expensive preconditioning?
- 2 or 4 M-v product not much more expensive than 1 M-v. Can you exploit this?

Existing Efforts:

- Mark Hoemmen (Berkeley), Communication Avoiding Krylov Methods
- ► Computes [v, Av, A²v, ..., A^sv] simultaneously
- Uses QR for orthogonalize
- Need to use Chebyshev basis for stability

Thank you!