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Introduction 

 For this talk we concentrate on dense parallel 
numerical linear algebra (PNLA) on “desktop” 
machines.  
 That is those with shared memory and many cores, 

including accelerators. 
 Why “commercial”? Success is measured in sales or 

retention, not discovering something interesting! 
 In the most part our dense PNLA is “LAPACK”. And by 

that we mean the functionality of LAPACK. 
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Collaborations: NAG & LAPACK 
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Other Collaborations 
 Much work with UoManchester, more recently this 

has included:  
 PhD concerning Nearest Correlation Matrices 
 Two Knowledge Transfer Partnerships (KTPs) 

 Latest one uses PLASMA. Some work through Open 
Petascale Library project with Fujitsu and Innovative 
Computing Lab (ICL, Jack, Tennessee) 
 Fortran Interfaces and test programs  

 Other universities and  many projects over the years. 
 Vendors, including AMD and Intel, particularly math 

libraries. 
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NAG Parallel Libraries 
 Traditionally NAG has a product for “SMP and 

Multicore”. 
 Same interface to serial routines, out-of-the-box 

parallelism for “novice” users. 
 Parallelism is achieved though use of threaded 

vendor libraries and OpenMP. 
 The latter possibly being quite “easy” or possibly 

being a completely new algorithmic approach. (As 
with modern OpenMP, PLASMA et al, more later.) 
 NLA used so much in the library it gives “indirect” 

parallelism to other routines. For example … 
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 Inherently serial algorithm, with BLAS, LAPACK and 
some OpenMP at each iteration. 
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Parallel NLA in NAG Library 

 We have done work, over and above using threaded 
BLAS, to parallelise  
 LU factorisation 
 Cholesky factorisation 
 QR factorisation 
 Forming and applying Q 
 Reduction to tri-/bi-diagonal form 
 Computation of eigenvectors 
 Error and condition number estimation (if you have a large 

amount of RHS these actually dominate the runtime of the 
expert drivers, not the factorisation and solver.) 
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NAG Library Functionality 

• Root Finding  
• Summation of Series (e.g. FFT) 
• Quadrature 
• Ordinary Differential Equations 
• Partial Differential Equations  
• Numerical Differentiation  
• Integral Equations  
• Mesh Generation  
• Interpolation  
• Curve and Surface Fitting  
• Optimisation 
• Approximations of Special 

Functions 
• Wavelet Transforms 

• Dense Linear Algebra 
• Sparse Linear Algebra 
• Correlation and Regression 

Analysis 
• Multivariate Analysis of Variance 
• Random Number Generators 
• Univariate Estimation  
• Nonparametric Statistics   
• Smoothing in Statistics   
• Contingency Table Analysis   
• Survival Analysis  
• Time Series Analysis  
• Operations Research  

http://info.nag.co.uk/TechProductInfo/Publications/fl/dev_manual/html/toc/c05.html
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Matrix Functions 

 NLA is not just LAPACK! 
 First KTP with UoM is generating a suite of routines 

including 
 Matrix exp and log 
 General matrix function with derivatives supplied or not 
 Trigonometric functions sin, cos, sinh, cosh 
 Action of exp on vector 
 Matrix pth roots and powers  

 Driven by commercial need from the finance sector. 
 Edvin parallelising these now… 



11 

Parallel Matrix Functions 

 Recall that NAG uses OpenMP for parallelism. Up 
until very recently this has been “old” style 
parallelism. 
 Sharing out independent iterations in loops mainly. 
 However, OpenMP 3.0 introduced TASKs. 

Independent units of work with some associated 
data. 
 Allows much freedom in parallelising algorithms. 

Considered for matrix square root… 
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Matrix Functions 

 Square root algorithm 
1. Compute a Schur decomposition: A = QTQ, with T upper 

triangular. 
2. Find U such that U2 = T, U also upper triangular  
3. √A = QUQ 

 Step 2 can be computed iteratively element wise (so 
called “point” algorithm), in a blocked fashion 
(exploiting cache memory) or recursively. 
 Choice of algorithm always crucial. 
 Analysis of dependencies … 
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Dependencies 

 To compute a block (or element) …  
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Dependencies 

 Recursive algorithm 
 Use OpenMP tasks 
 Tasks allow recursion, not 

possible with older OpenMP 
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Performance 

 n = 4000 
 
 
 
 
 
 
 
 

Crucially, best serial 
algorithm NOT the 
same as best 
parallel algorithm. 



16 

Manycore Research Project 

 We have internal manycore research project. 
Architectures include multicore, GPU and Intel Xeon 
Phi (MIC). 
 As well as looking at novel algorithms and modern 

parallel programming also trying to leverage 
academic work (as always). 
 This gives very rapid development of new 

functionality, although with some software 
engineering. 
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GPUs 

 Needs no introduction, but 
 Consist of 100’s of “lightweight” cores, running 

1000’s of threads. 
 The latter helping to hide the latency of data 

movement to the card. 
 
 NAG has a GPU “Library” aimed at the finance sector. 

Some RNGs. PDEs requiring some work with NLA, 
coming soon. LU & Cholesky from MAGMA.  
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MAGMA 
 Developed at ICL to target heterogeneous 

architectures. 
 Beta version of GPU based NAG library built on 

MAGMA version 1.1. 
 Targets MAGMA routines that have identical 

interfaces to LAPACK, including LU, Cholesky, QR, 
Eigenvalues and SVD.  
 We also wrap level 3 CUBLAS routines. 
 Easy (commercial) option for now.  
 Each call to BLAS or MAGMA includes data transfer, 

we do it for the former. 
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MAGMA 
 Need “big” (n in the 100’s to 1000’s) problem to 

make this worthwhile.  
 We test for smaller problems and send those to MKL 

on the host instead. User tuneable via API. 
 This is also done inside MAGMA but we opted for 

more control. 
 We could be more sophisticated here and look at 

matrix shapes too, also 
 Need to look at routines requiring data to be on GPU. 
 Tested on Intel i7 860 with NVVIDIA C2050, speedup 

of between 2x and 7x over MKL LAPACK. 
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Intel Many Integrated Cores (MIC) 

 50+ cores with 4 hyper threads. 
 Cores have wide vector units  

(512 bits) and with FMA can  
compute 16 operation per cycle. 
 Clock speed is about 1GHz. 
 Runs legacy code with offloads to MIC, targets 

current OpenMP parallelism. 
 Or, runs entire (C/Fortran) code on the MIC. 

 
 Product next year, and NAG library that supports it! 
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Intel MIC 

 So programming style similar to OpenMP with data 
transfer overhead of GPU. 
 So how to use NLA? MKL is provided. 
 MKL can be called from the host (off loading 

computation) or form the MIC (using data already 
there.) But, crucially, can’t keep it there between 
calls. 
 MKL makes runtime decision based on problem size 

as to whether to offload or not in the first case. 
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Intel MIC 

 Three choices for NAG in providing a library for MIC 
 Use MKL, with off loads, and our existing OpenMP parallel 

regions with the addition of offloads. Our traditional 
approach for a multicore library. But perhaps grouping 
calls into one offload. 

 Much more interaction with user. Provide for the user to 
have data already offloaded. NAG routines will pick this 
data up and leave it there when the routines exits. A big 
change for users. 

 Assume the user’s application is running on the MIC so the 
whole library could be built for the MIC (no offload, no 
computation on host.) 
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PLASMA KTP 

 Knowledge Transfer Partnership does what is say on 
the tin. 
 The Numerical Algorithms Group 

 Me and our manycore research team 
 Joseph Dobson “associate” 

 The University of Manchester 
 Jack Dongarra, David Silvester, 

Nick Higham 
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Recall LAPACK DPOTRF  
            DO J = 1, N, JB 
 
*              Update and factorize the current diagonal BLOCK  
 
               CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE, 
     $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA ) 
               CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO ) 
               IF( J+JB.LE.N ) THEN 
 
*                 Compute the current PANEL. 
 
                  CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB, 
     $                        J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ), 
     $                        LDA, ONE, A( J+JB, J ), LDA ) 
                  CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit', 
     $                        N-J-JB+1, JB, ONE, A( J, J ), LDA, 
     $                        A( J+JB, J ), LDA ) 
               END IF 
            END DO 
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Recall Parallel DPOTRF 

 Excessive synchronisation 
 Parallelism shoe horned in 

 
 
 
 
 
 

Pre PLASMA algorithm: 
 
1. Compute diagonal blue 

blocks (DSYRK and 
DPOTF2) and on one 
core 

2. Compute the green 
panel (DGEMM and 
DTRSM) on multi-cores 
with threaded BLAS 

3. Repeat on next column 
 

        We can’t start the 
next blue block until 
the previous panel is 
done.... 
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Need new algorithmic approach, PLASMA 

 Consider the matrix now broken down into tiles: 
 
 
 
 
 
 
 

PLASMA algorithm 
 
1. Analyse the 

dependencies between 
tiles, gives: 

2. Compute first diagonal 
blue block on one core 

3. Compute the first green 
tile on a single core 

4. Now free to continue 
down panel, but also do 
next blue block. 

5. etc 
 

Note a tile is still blocked 
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Directed Acyclic Graph (4X4 Cholesky) 
 
 Each node is a task, not 

the computation of a 
complete tile.  
 The largest piece of data  

is a tile. So several tasks 
can make up the 
computation of a tile. 
 Directed edges show 

dependencies. 
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Computation Time  

 LAPACK with threaded BLAS 
 
 
 
 PLASMA 

 
 
 
 
 

Time 

Start next 
PLASMA 
routine here 
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PLASMA 
 Much bigger investment by NAG compared to 

MAGMA.  
 We will work on integrating the different interfaces, 

that we avoided with MAGMA so far. 
 Other software engineering challenges 

 Interoperability issues of Pthreads and OpenMP 
 Using the PLASMA scheduler, Quark 
 Mixing of serial and threaded BLAS 
 Integrating the asynchronous routines, that allow DAGs to 

span routines boundaries.  

 We will need consider tuning of tile and block sizes. 
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Data storage 

 Rather than storing matrices as column major, 
PLASMA stores tiles contiguously, and provides 
routines for conversion between the two formats. 
 We could completely hide PLASMA or do we allow 

user to supply data in PLASMA tiled storage? 
Another big change for users. 
 Should we supply other routines that act upon tiled 

storage? 
 
 How do all these libraries fit together… 
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More OpenMP 

 OpenMP is developing very quickly.  
 More support for nested parallelism.  
 Affinity - mappings threads to hardware 
 Accelerators - OpenACC 
 Error model - exiting OpenMP loops and regions 
 TASKs - dependencies defined between them  

 

 In particular, for PNLA this last addition will give us 
implicit DAGs, and PLASAM-esque routines. 
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OpenMP TASK Dependencies 

 In our Cholesky example each call to a BLAS routine 
could be an OpenMP task, perhaps. 
 OpenMP 4.0 will allow us to define data to be in, out, 

inout.  
 (Plus possibly another way to define graph edges.) 
 So we could modify DPOTRF, thus … 

 
 (Note I haven’t reorganised data into tiles.)  
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*           Loop over tiles 
* 
            DO 20 J = 1, N, NB 
* 
*              Update and factorize the current diagonal block and test 
*              for non-positive-definiteness. 
* 
               JB = MIN( NB, N-J+1 ) 
* 
*              Loop across tiles contributing to current tile 
*              Note we use NB as previous columns will be NB wide 
*              and only the last column is JB 
* 
               DO L = 1, J-1, NB 
                  !$OMP TASK in(A(J:J+NB-1,J-NB:J-1) & 
                  !$OMP inout(A(J:J+NB-1,J:J+NB-1) 
                  CALL DSYRK( 'Lower', 'No transpose', JB, NB, -ONE, 
     $                        A( J, L ), LDA, ONE, A( J, J ), LDA ) 
               END DO 
* 
               !$OMP TASK inout(A(J:J+NB-1,J:J+NB-1) 
               CALL DPOTRF( 'Lower', JB, A( J, J ), LDA, INFO ) 
 

Implies data is read only and 
defines a dependency (graph 
edge) 

Defines a dependency for 
the next task accessing the 
array section 
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*                 Compute the current block column. 
*                 Loop down tiles in panel 
* 
                  DO I = J + NB, N, NB 
                     IB = MIN( NB, N-I+1 ) 
* 
*                    Loop across tiles contributing to current tile 
*                      
                     DO K = 1, J-1, NB  
                        !$OMP TASK in(A(J:J+NB-1,J-NB:J-1) & 
                        !$OMP in(A(I:I+NB-1,J-NB:J-1) &  
                        !$OMP inout(A(I:I+NB-1,J:J+NB-1) 
                        CALL DGEMM( 'No transpose', 'Transpose', IB, JB, 
     $                              NB, -ONE, A( I, K ), LDA, A( J, K ), 
     $                              LDA, ONE, A( I, J ), LDA ) 
                     END DO 
                     !$OMP TASK in(A(J:J+NB-1,J:J+NB-1) & 
                     !$OMP inout(A(I:I+NB-1,J:J+NB-1) & 
                     CALL DTRSM( 'Right', 'Lower', 'Trans', 'Non-unit', 
     $                            IB, JB, ONE, A( J, J ), LDA, 
     $                            A( I, J ), LDA ) 
                  END DO 
               END IF 
   20       CONTINUE 
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User Experience 

 NAG will change the way we present parallelism to 
the user. 
 We have already seen this with the likely ways we 

will implement MIC and PLASMA based libraries.  
 The complexity of modern architecture demands 

this. 
 Users also want to use their own OpenMP with NAG. 
 OpenMP support for nested parallelism and affinity 

will help with NUMA architecture, but again more 
complexity for and interaction from the user. 
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Summary 

 So is it the end of our “out-of-the-box” parallelism? 
 Probably not. With “expert” and “novice” interfaces. 
 But the latter may ultimately be at the cost of 

performance.  
 Extra data movement and/or redistribution 
 Blind to NUMA effects etc. 

 

 New architecture are exciting and challenging. 
 New software and programming is embracing it. 
 New challengers for the user. 
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