
Experts in numerical algorithms
and HPC services

Parallel Numerical Linear Algebra in a
Commercial Library

Craig Lucas
 18th July 2012

2

Introduction

 For this talk we concentrate on dense parallel
numerical linear algebra (PNLA) on “desktop”
machines.
 That is those with shared memory and many cores,

including accelerators.
 Why “commercial”? Success is measured in sales or

retention, not discovering something interesting!
 In the most part our dense PNLA is “LAPACK”. And by

that we mean the functionality of LAPACK.

3

Collaborations: NAG & LAPACK

4

Other Collaborations
 Much work with UoManchester, more recently this

has included:
 PhD concerning Nearest Correlation Matrices
 Two Knowledge Transfer Partnerships (KTPs)

 Latest one uses PLASMA. Some work through Open
Petascale Library project with Fujitsu and Innovative
Computing Lab (ICL, Jack, Tennessee)
 Fortran Interfaces and test programs

 Other universities and many projects over the years.
 Vendors, including AMD and Intel, particularly math

libraries.

5

NAG Parallel Libraries
 Traditionally NAG has a product for “SMP and

Multicore”.
 Same interface to serial routines, out-of-the-box

parallelism for “novice” users.
 Parallelism is achieved though use of threaded

vendor libraries and OpenMP.
 The latter possibly being quite “easy” or possibly

being a completely new algorithmic approach. (As
with modern OpenMP, PLASMA et al, more later.)
 NLA used so much in the library it gives “indirect”

parallelism to other routines. For example …

6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 4 8

SMP Library + MKL

Nearest-correlation matrix

Ti
m

e
(s

ec
s)

Number of cores

Intel Xeon E5405 2.0
GHz, N=10,000

 Inherently serial algorithm, with BLAS, LAPACK and
some OpenMP at each iteration.

7

Parallel NLA in NAG Library

 We have done work, over and above using threaded
BLAS, to parallelise
 LU factorisation
 Cholesky factorisation
 QR factorisation
 Forming and applying Q
 Reduction to tri-/bi-diagonal form
 Computation of eigenvectors
 Error and condition number estimation (if you have a large

amount of RHS these actually dominate the runtime of the
expert drivers, not the factorisation and solver.)

8

0

2000

4000

6000

8000

10000

12000

1000 2000 4000 1000 2000 4000

1

2

4

S.V.D. (DBDSQR)

Problem size (N)

Pe
rf

or
m

an
ce

 (M
flo

ps
)

SMP DBDSQR+ ACML BLAS

NCPU

netlib DBDSQR + ACML BLAS

Improved serial performance too

9

NAG Library Functionality

• Root Finding
• Summation of Series (e.g. FFT)
• Quadrature
• Ordinary Differential Equations
• Partial Differential Equations
• Numerical Differentiation
• Integral Equations
• Mesh Generation
• Interpolation
• Curve and Surface Fitting
• Optimisation
• Approximations of Special

Functions
• Wavelet Transforms

• Dense Linear Algebra
• Sparse Linear Algebra
• Correlation and Regression

Analysis
• Multivariate Analysis of Variance
• Random Number Generators
• Univariate Estimation
• Nonparametric Statistics
• Smoothing in Statistics
• Contingency Table Analysis
• Survival Analysis
• Time Series Analysis
• Operations Research

http://info.nag.co.uk/TechProductInfo/Publications/fl/dev_manual/html/toc/c05.html

10

Matrix Functions

 NLA is not just LAPACK!
 First KTP with UoM is generating a suite of routines

including
 Matrix exp and log
 General matrix function with derivatives supplied or not
 Trigonometric functions sin, cos, sinh, cosh
 Action of exp on vector
 Matrix pth roots and powers

 Driven by commercial need from the finance sector.
 Edvin parallelising these now…

11

Parallel Matrix Functions

 Recall that NAG uses OpenMP for parallelism. Up
until very recently this has been “old” style
parallelism.
 Sharing out independent iterations in loops mainly.
 However, OpenMP 3.0 introduced TASKs.

Independent units of work with some associated
data.
 Allows much freedom in parallelising algorithms.

Considered for matrix square root…

12

Matrix Functions

 Square root algorithm
1. Compute a Schur decomposition: A = QTQ, with T upper

triangular.
2. Find U such that U2 = T, U also upper triangular
3. √A = QUQ

 Step 2 can be computed iteratively element wise (so
called “point” algorithm), in a blocked fashion
(exploiting cache memory) or recursively.
 Choice of algorithm always crucial.
 Analysis of dependencies …

13

Dependencies

 To compute a block (or element) …

14

Dependencies

 Recursive algorithm
 Use OpenMP tasks
 Tasks allow recursion, not

possible with older OpenMP

15

Performance

 n = 4000

Crucially, best serial
algorithm NOT the
same as best
parallel algorithm.

16

Manycore Research Project

 We have internal manycore research project.
Architectures include multicore, GPU and Intel Xeon
Phi (MIC).
 As well as looking at novel algorithms and modern

parallel programming also trying to leverage
academic work (as always).
 This gives very rapid development of new

functionality, although with some software
engineering.

17

GPUs

 Needs no introduction, but
 Consist of 100’s of “lightweight” cores, running

1000’s of threads.
 The latter helping to hide the latency of data

movement to the card.

 NAG has a GPU “Library” aimed at the finance sector.

Some RNGs. PDEs requiring some work with NLA,
coming soon. LU & Cholesky from MAGMA.

18

MAGMA
 Developed at ICL to target heterogeneous

architectures.
 Beta version of GPU based NAG library built on

MAGMA version 1.1.
 Targets MAGMA routines that have identical

interfaces to LAPACK, including LU, Cholesky, QR,
Eigenvalues and SVD.
 We also wrap level 3 CUBLAS routines.
 Easy (commercial) option for now.
 Each call to BLAS or MAGMA includes data transfer,

we do it for the former.

19

MAGMA
 Need “big” (n in the 100’s to 1000’s) problem to

make this worthwhile.
 We test for smaller problems and send those to MKL

on the host instead. User tuneable via API.
 This is also done inside MAGMA but we opted for

more control.
 We could be more sophisticated here and look at

matrix shapes too, also
 Need to look at routines requiring data to be on GPU.
 Tested on Intel i7 860 with NVVIDIA C2050, speedup

of between 2x and 7x over MKL LAPACK.

20

Intel Many Integrated Cores (MIC)

 50+ cores with 4 hyper threads.
 Cores have wide vector units

(512 bits) and with FMA can
compute 16 operation per cycle.
 Clock speed is about 1GHz.
 Runs legacy code with offloads to MIC, targets

current OpenMP parallelism.
 Or, runs entire (C/Fortran) code on the MIC.

 Product next year, and NAG library that supports it!

21

Intel MIC

 So programming style similar to OpenMP with data
transfer overhead of GPU.
 So how to use NLA? MKL is provided.
 MKL can be called from the host (off loading

computation) or form the MIC (using data already
there.) But, crucially, can’t keep it there between
calls.
 MKL makes runtime decision based on problem size

as to whether to offload or not in the first case.

22

Intel MIC

 Three choices for NAG in providing a library for MIC
 Use MKL, with off loads, and our existing OpenMP parallel

regions with the addition of offloads. Our traditional
approach for a multicore library. But perhaps grouping
calls into one offload.

 Much more interaction with user. Provide for the user to
have data already offloaded. NAG routines will pick this
data up and leave it there when the routines exits. A big
change for users.

 Assume the user’s application is running on the MIC so the
whole library could be built for the MIC (no offload, no
computation on host.)

23

PLASMA KTP

 Knowledge Transfer Partnership does what is say on
the tin.
 The Numerical Algorithms Group

 Me and our manycore research team
 Joseph Dobson “associate”

 The University of Manchester
 Jack Dongarra, David Silvester,

Nick Higham

24

Recall LAPACK DPOTRF
 DO J = 1, N, JB

* Update and factorize the current diagonal BLOCK

 CALL DSYRK('Lower', 'No transpose', JB, J-1, -ONE,
 $ A(J, 1), LDA, ONE, A(J, J), LDA)
 CALL DPOTF2('Lower', JB, A(J, J), LDA, INFO)
 IF(J+JB.LE.N) THEN

* Compute the current PANEL.

 CALL DGEMM('No transpose', 'Transpose', N-J-JB+1, JB,
 $ J-1, -ONE, A(J+JB, 1), LDA, A(J, 1),
 $ LDA, ONE, A(J+JB, J), LDA)
 CALL DTRSM('Right', 'Lower', 'Transpose', 'Non-unit',
 $ N-J-JB+1, JB, ONE, A(J, J), LDA,
 $ A(J+JB, J), LDA)
 END IF
 END DO

25

Recall Parallel DPOTRF

 Excessive synchronisation
 Parallelism shoe horned in

Pre PLASMA algorithm:

1. Compute diagonal blue

blocks (DSYRK and
DPOTF2) and on one
core

2. Compute the green
panel (DGEMM and
DTRSM) on multi-cores
with threaded BLAS

3. Repeat on next column

 We can’t start the
next blue block until
the previous panel is
done....

26

Need new algorithmic approach, PLASMA

 Consider the matrix now broken down into tiles:

PLASMA algorithm

1. Analyse the

dependencies between
tiles, gives:

2. Compute first diagonal
blue block on one core

3. Compute the first green
tile on a single core

4. Now free to continue
down panel, but also do
next blue block.

5. etc

Note a tile is still blocked

27

Directed Acyclic Graph (4X4 Cholesky)

 Each node is a task, not

the computation of a
complete tile.
 The largest piece of data

is a tile. So several tasks
can make up the
computation of a tile.
 Directed edges show

dependencies.

28

Computation Time

 LAPACK with threaded BLAS

 PLASMA

Time

Start next
PLASMA
routine here

29

PLASMA
 Much bigger investment by NAG compared to

MAGMA.
 We will work on integrating the different interfaces,

that we avoided with MAGMA so far.
 Other software engineering challenges

 Interoperability issues of Pthreads and OpenMP
 Using the PLASMA scheduler, Quark
 Mixing of serial and threaded BLAS
 Integrating the asynchronous routines, that allow DAGs to

span routines boundaries.

 We will need consider tuning of tile and block sizes.

30

Data storage

 Rather than storing matrices as column major,
PLASMA stores tiles contiguously, and provides
routines for conversion between the two formats.
 We could completely hide PLASMA or do we allow

user to supply data in PLASMA tiled storage?
Another big change for users.
 Should we supply other routines that act upon tiled

storage?

 How do all these libraries fit together…

31

PLASMA

User
Application

NAG Libraries

 PLASMA

Vendor Libraries

Hardware

C
om

pilers, runtim
es etc

32

More OpenMP

 OpenMP is developing very quickly.
 More support for nested parallelism.
 Affinity - mappings threads to hardware
 Accelerators - OpenACC
 Error model - exiting OpenMP loops and regions
 TASKs - dependencies defined between them

 In particular, for PNLA this last addition will give us
implicit DAGs, and PLASAM-esque routines.

33

OpenMP TASK Dependencies

 In our Cholesky example each call to a BLAS routine
could be an OpenMP task, perhaps.
 OpenMP 4.0 will allow us to define data to be in, out,

inout.
 (Plus possibly another way to define graph edges.)
 So we could modify DPOTRF, thus …

 (Note I haven’t reorganised data into tiles.)

34

* Loop over tiles
*
 DO 20 J = 1, N, NB
*
* Update and factorize the current diagonal block and test
* for non-positive-definiteness.
*
 JB = MIN(NB, N-J+1)
*
* Loop across tiles contributing to current tile
* Note we use NB as previous columns will be NB wide
* and only the last column is JB
*
 DO L = 1, J-1, NB
 !$OMP TASK in(A(J:J+NB-1,J-NB:J-1) &
 !$OMP inout(A(J:J+NB-1,J:J+NB-1)
 CALL DSYRK('Lower', 'No transpose', JB, NB, -ONE,
 $ A(J, L), LDA, ONE, A(J, J), LDA)
 END DO
*
 !$OMP TASK inout(A(J:J+NB-1,J:J+NB-1)
 CALL DPOTRF('Lower', JB, A(J, J), LDA, INFO)

Implies data is read only and
defines a dependency (graph
edge)

Defines a dependency for
the next task accessing the
array section

35

* Compute the current block column.
* Loop down tiles in panel
*
 DO I = J + NB, N, NB
 IB = MIN(NB, N-I+1)
*
* Loop across tiles contributing to current tile
*
 DO K = 1, J-1, NB
 !$OMP TASK in(A(J:J+NB-1,J-NB:J-1) &
 !$OMP in(A(I:I+NB-1,J-NB:J-1) &
 !$OMP inout(A(I:I+NB-1,J:J+NB-1)
 CALL DGEMM('No transpose', 'Transpose', IB, JB,
 $ NB, -ONE, A(I, K), LDA, A(J, K),
 $ LDA, ONE, A(I, J), LDA)
 END DO
 !$OMP TASK in(A(J:J+NB-1,J:J+NB-1) &
 !$OMP inout(A(I:I+NB-1,J:J+NB-1) &
 CALL DTRSM('Right', 'Lower', 'Trans', 'Non-unit',
 $ IB, JB, ONE, A(J, J), LDA,
 $ A(I, J), LDA)
 END DO
 END IF
 20 CONTINUE

36

User Experience

 NAG will change the way we present parallelism to
the user.
 We have already seen this with the likely ways we

will implement MIC and PLASMA based libraries.
 The complexity of modern architecture demands

this.
 Users also want to use their own OpenMP with NAG.
 OpenMP support for nested parallelism and affinity

will help with NUMA architecture, but again more
complexity for and interaction from the user.

37

Summary

 So is it the end of our “out-of-the-box” parallelism?
 Probably not. With “expert” and “novice” interfaces.
 But the latter may ultimately be at the cost of

performance.
 Extra data movement and/or redistribution
 Blind to NUMA effects etc.

 New architecture are exciting and challenging.
 New software and programming is embracing it.
 New challengers for the user.

	Parallel Numerical Linear Algebra in a Commercial Library
	Introduction
	Collaborations: NAG & LAPACK
	Other Collaborations
	NAG Parallel Libraries
	Nearest-correlation matrix
	Parallel NLA in NAG Library
	S.V.D. (DBDSQR)
	NAG Library Functionality
	Matrix Functions
	Parallel Matrix Functions
	Matrix Functions
	Dependencies
	Dependencies
	Performance
	Manycore Research Project
	GPUs
	MAGMA
	MAGMA
	Intel Many Integrated Cores (MIC)
	Intel MIC
	Intel MIC
	PLASMA KTP
	Recall LAPACK DPOTRF
	Recall Parallel DPOTRF
	Need new algorithmic approach, PLASMA
	Directed Acyclic Graph (4X4 Cholesky)
	Computation Time
	PLASMA
	Data storage
	PLASMA
	More OpenMP
	OpenMP TASK Dependencies
	Slide Number 34
	Slide Number 35
	User Experience
	Summary

