
University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Block-Level Dynamic Dependence Analysis
for Task-Based Parallelism

Dimitrios S. Nikolopoulos

School of EEECS, Queen’s University of Belfast

July 18, 2012

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Table of Contents

Motivation

Block-Level Dynamic Dependence Analysis

Static Independence Analysis

Implementation and Evaluation

Conclusions

2 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Thread-Based Programming

I Hard for programmer to reason about thread
interleavings and concurrent memory accesses

I Error-prone:
I Races, deadlocks, livelocks, all hard to reproduce

I Task-based parallelism offers a higher level of
abstraction

I Early models (e.g. OpenMP, Cilk) based on explicit
synchronization

I New models based on automatic dependence analysis
are emerging

I Runtime dependence analysis based on programmer’s
annotation of memory footprint (OmpSs, SvS)

I Static dependence analysis based on compiler’s
inference of memory footprint (DPJ)

I Hybrid static-dynamic schemes – this talk

3 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Opportunity for Dependence Analysis: FFTA:4

1 void FFT 1D (long N, long N SQRT, long FFT BS, long TR BS,
2 double Complex A[N SQRT][N SQRT])
3 {
4 const size t rowsz = N SQRT * 2 * sizeof(double);
5 const size t longsz = sizeof(long);
6
7 // Loop 1: Transpose
8 for (long I = 0; I < N SQRT; I += TR BS) {
9 void * tile ii = &A[I][I];

10
11 #pragma task \
12 in(N[longsz], N SQRT[longsz], TR BS[longsz]) \
13 inout(tile ii[rowsz][TR BS|TR BS*2*sizeof(double)]);
14 trsp blk (N, N SQRT, TR BS, tile ii);
15
16 for (long J = I + TR BS; J < N SQRT; J += TR BS) {
17 void * tile ij = &A[I][J];
18 void * tile ji = &A[J][I];
19
20 #pragma task \
21 in(N[longsz], N SQRT[longsz], TR BS[longsz]) \
22 inout(tile ij[rowsz][TR BS|TR BS*2*sizeof(double)], \
23 tile ji [rowsz][TR BS|TR BS*2*sizeof(double)]);
24 trsp swap(N, N SQRT, TR BS, tile1, tile2);
25 }
26 }
27
28 // Loop 2: First FFT round
29 for (long J = 0; J < N SQRT; J += FFT BS) {
30 tile = &A[J][0];
31
32 #pragma task \
33 in(N SQRT[longsz], FFT BS[longsz]) \
34 inout(tile[FFT BS*rowsz)]);
35 FFT1D(N SQRT, FFT BS, &A[J][0]);
36 }
37
38 ...
39 }

Fig. 1. Parallel FFT in IDDI

2.2. Example 2: Static analysis
Consider the C program in Figure 3. This program has three global integer variables,
a, b and c (line 1) and a global pointer alias (line 2) that points to b. Function set()
copies the value of its second argument to the first (line 4), and function addto() adds
the value of its second argument to the value of its first (line 5). The two functions
are then invoked in two parallel tasks, to add c to b (lines 8–9) and to set the value
of a to the value pointed to by alias (lines 11–12). The first task reads and writes its
first argument, b, and reads from its second argument, c. Similarly, the second task
writes to its first argument, a, and reads from its second argument alias. The program
then waits at a synchronization point for the first two tasks to finish (line 14) and then
spawns a third task that reads from c and writes to a (lines 16–17).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

4 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Table of Contents

Motivation

Block-Level Dynamic Dependence Analysis

Static Independence Analysis

Implementation and Evaluation

Conclusions

5 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Whole Object Analysis

I Analysis of whole task arguments (objects)
I Simple: use object base address for detecting

dependencies
I Assumes objects are contiguous in memory

I Can not analyze dependencies between
multi-dimensional array blocks

I Can not analyze dependencies static or dynamic,
arbitrary collections of objects

I Can not detect partial overlaps

I May require data layout transformations (memory
copies)

I Can not be used to write parallel code operating on
dynamic data structures

6 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Block-Level Analysis

I Block-level analysis
I Intuition: partition virtual memory into fixed-size blocks
I Analyze dependencies between blocks instead of

program objects
I Treat objects as arbitrary collections of memory blocks

I Can analyze dependencies between multi-dimensional
array blocks, arbitrary collections of objects, static or
dynamic

I Can detect partial overlaps

I Programmability: easier to write parallel code operating
on static or dynamic structures, array-based or linked

I Overhead: Objects composed of N blocks need N
analysis checks

7 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Elements of Block-Level Analysis

I Task descriptor containing the closure of task
I Code, memory footprint and other dependent tasks

I Block descriptors containing queue of tasks waiting to
access the block

I Include access mode (in, out, inout)
I Use versioning (renaming) on writes
I Versions reveal parallelism

I Efficient implementation
I Custom memory allocator with task metadata

embedded with memory allocator metadata
I O(1) lookups for all metadata
I Small memory footprint for low cache pollution

8 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Block-Level Analysis by Example

A:10

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Fig. 6. Example of dynamic dependence analysis

that allows for fast lookup of metadata while still hiding metadata management in the
runtime system. Consequently, we require that all data that constitutes shared state
between parallel tasks is allocated through the custom memory allocator.1

Specifically, the allocator partitions the virtual address space in slabs and services
memory allocation requests from such slabs. IDDI divides the slabs in blocks of con-
figurable but fixed size, and also allocates space for a pointer per block to the block’s
metadata descriptor. For example, Figure 6(a) shows the structure of such a slab. Note
that data blocks are allocated starting from the end of the slab, while pointers to the
metadata for these blocks are allocated starting from the beginning of the slab, so that
the lookup of metadata happens in constant time and has high cache locality. Finally,
IDDI bulk deallocates the whole slab and related metadata at the end of the parallel
task execution, simplifying and accelerating the allocator.

We use the slab pointers to group any blocks accessed together and avoid repeating
the dependence analysis per block. Namely, when a collection of blocks all form a task
argument together, we can assign one metadata descriptor to all blocks. Conversely,
we split collections of blocks by assigning a new pointer to a subset of the blocks. For
example, Figure 6(a) shows the runtime metadata as it is constructed after spawning
task T1, which accesses the 4 shaded blocks. When issuing T1, IDDI registers one
metadata element (M1) for the four blocks and sets the slab pointers of the blocks to

1Several parallel runtime systems implement custom memory allocators for performance reasons, e.g.,
Cilk++ and Intel TBB. This is not a limitation of the usability of the programming model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

9 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Block-Level Analysis by Example

A:10

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Fig. 6. Example of dynamic dependence analysis

that allows for fast lookup of metadata while still hiding metadata management in the
runtime system. Consequently, we require that all data that constitutes shared state
between parallel tasks is allocated through the custom memory allocator.1

Specifically, the allocator partitions the virtual address space in slabs and services
memory allocation requests from such slabs. IDDI divides the slabs in blocks of con-
figurable but fixed size, and also allocates space for a pointer per block to the block’s
metadata descriptor. For example, Figure 6(a) shows the structure of such a slab. Note
that data blocks are allocated starting from the end of the slab, while pointers to the
metadata for these blocks are allocated starting from the beginning of the slab, so that
the lookup of metadata happens in constant time and has high cache locality. Finally,
IDDI bulk deallocates the whole slab and related metadata at the end of the parallel
task execution, simplifying and accelerating the allocator.

We use the slab pointers to group any blocks accessed together and avoid repeating
the dependence analysis per block. Namely, when a collection of blocks all form a task
argument together, we can assign one metadata descriptor to all blocks. Conversely,
we split collections of blocks by assigning a new pointer to a subset of the blocks. For
example, Figure 6(a) shows the runtime metadata as it is constructed after spawning
task T1, which accesses the 4 shaded blocks. When issuing T1, IDDI registers one
metadata element (M1) for the four blocks and sets the slab pointers of the blocks to

1Several parallel runtime systems implement custom memory allocators for performance reasons, e.g.,
Cilk++ and Intel TBB. This is not a limitation of the usability of the programming model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

10 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Block-Level Analysis by Example

A:10

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Fig. 6. Example of dynamic dependence analysis

that allows for fast lookup of metadata while still hiding metadata management in the
runtime system. Consequently, we require that all data that constitutes shared state
between parallel tasks is allocated through the custom memory allocator.1

Specifically, the allocator partitions the virtual address space in slabs and services
memory allocation requests from such slabs. IDDI divides the slabs in blocks of con-
figurable but fixed size, and also allocates space for a pointer per block to the block’s
metadata descriptor. For example, Figure 6(a) shows the structure of such a slab. Note
that data blocks are allocated starting from the end of the slab, while pointers to the
metadata for these blocks are allocated starting from the beginning of the slab, so that
the lookup of metadata happens in constant time and has high cache locality. Finally,
IDDI bulk deallocates the whole slab and related metadata at the end of the parallel
task execution, simplifying and accelerating the allocator.

We use the slab pointers to group any blocks accessed together and avoid repeating
the dependence analysis per block. Namely, when a collection of blocks all form a task
argument together, we can assign one metadata descriptor to all blocks. Conversely,
we split collections of blocks by assigning a new pointer to a subset of the blocks. For
example, Figure 6(a) shows the runtime metadata as it is constructed after spawning
task T1, which accesses the 4 shaded blocks. When issuing T1, IDDI registers one
metadata element (M1) for the four blocks and sets the slab pointers of the blocks to

1Several parallel runtime systems implement custom memory allocators for performance reasons, e.g.,
Cilk++ and Intel TBB. This is not a limitation of the usability of the programming model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

11 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Block-Level Analysis by Example

A:10

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Fig. 6. Example of dynamic dependence analysis

that allows for fast lookup of metadata while still hiding metadata management in the
runtime system. Consequently, we require that all data that constitutes shared state
between parallel tasks is allocated through the custom memory allocator.1

Specifically, the allocator partitions the virtual address space in slabs and services
memory allocation requests from such slabs. IDDI divides the slabs in blocks of con-
figurable but fixed size, and also allocates space for a pointer per block to the block’s
metadata descriptor. For example, Figure 6(a) shows the structure of such a slab. Note
that data blocks are allocated starting from the end of the slab, while pointers to the
metadata for these blocks are allocated starting from the beginning of the slab, so that
the lookup of metadata happens in constant time and has high cache locality. Finally,
IDDI bulk deallocates the whole slab and related metadata at the end of the parallel
task execution, simplifying and accelerating the allocator.

We use the slab pointers to group any blocks accessed together and avoid repeating
the dependence analysis per block. Namely, when a collection of blocks all form a task
argument together, we can assign one metadata descriptor to all blocks. Conversely,
we split collections of blocks by assigning a new pointer to a subset of the blocks. For
example, Figure 6(a) shows the runtime metadata as it is constructed after spawning
task T1, which accesses the 4 shaded blocks. When issuing T1, IDDI registers one
metadata element (M1) for the four blocks and sets the slab pointers of the blocks to

1Several parallel runtime systems implement custom memory allocators for performance reasons, e.g.,
Cilk++ and Intel TBB. This is not a limitation of the usability of the programming model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

12 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Table of Contents

Motivation

Block-Level Dynamic Dependence Analysis

Static Independence Analysis

Implementation and Evaluation

Conclusions

13 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Opportunity for Static Analysis

A:5

(a) OpenMP (b) IDDI

Fig. 2. Task graphs showing run-time task execution and dependencies

1 int a = 1, b = 2, c = 3;
2 int *alias = &b;
3
4 void set(int *x, int *y) { *x = *y; }
5 void addto(int *x, int *y) { *x += *y; }
6
7 int main() {
8 #pragma task inout(&b) safe(&c);
9 addto(&b, &c);

10
11 #pragma task safe(&a) in(alias);
12 set(&a, alias);
13
14 #pragma wait all
15
16 #pragma task safe(&a) safe(&c);
17 set(&a, &c);
18 }

Fig. 3. Tasks with independent arguments

To execute this program preserving the sequential semantics, the second task set
needs to wait until the value of b is produced by the first task, i.e., there is a dependence
on memory location b. Note, however, that since the third task cannot be spawned until
the first two return, memory location c is only accessed by the first task and a is only
accessed by the second. So, any dependence analysis time spent checking for conflicts
on a or c before it starts the first two tasks is unnecessary overhead that delays the
creation of the parallel tasks, possibly restricting available parallelism, and thus the
scalability of the program. So, the #pragma task directive spawning these tasks states
that c and a are safe or independent arguments, that the analysis does not need to
track. For the same reason, both the arguments of the third task are safe, meaning it
can start to run without checking for dependencies.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

I Dependence analysis
unnecessary on a and c in
first two tasks because of
barrier

I Dependence analysis
unnecessary on a and c in
third task because of
barrier

I Tedious for programmer
to manage, best handled
by compiler

14 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Language λ‖
A:6

Values v ::= n | () | λx . e
Expressions e ::= v | x | e; e | e e | ref e | ! e | e := e

| task(e1, . . . , en) {e} | barrier
Locations ρ ∈ L
CFG Points φ ∈ F
Tasks π ∈ T
Types τ ::= int | unit | (τ, φ) → (τ, φ) | ref ρ(τ)
Constraints C ::= ∅ | C ∪ C | τ ≤ τ | ρ ≤ ρ | φ ≤ φ

| ρ ≤ π | π�π | φ : Barrier | φ : π
Environments Γ ::= · | Γ, x : τ

Fig. 4. λ�: A simple task-based parallel language

Section 3 describes the static analysis we use to discover independent task argu-
ments like a and c above. Inferring that a task argument does not need to be checked
for dependencies requires verifying that no other task can access that argument. In
short, the static analysis infers this independence in three steps. First, we compute
aliasing information for all memory locations in the program. Second, we compute
which tasks can run in parallel; we do not need to check for conflicting arguments be-
tween for example the second and third task in the example of Figure 3, even though a
is accessed by both, because the barrier prohibits them from running at the same time.
Third, we check whether a memory location (through any alias) is never accessed in
parallel by more than one task. We can then safely omit checking this location at run-
time. We can extend this idea by differentiating between read and write accesses, and
allowing for concurrent reads without checking for dependencies, as long as no writes
can happen in parallel.

3. STATIC INDEPENDENCE ANALYSIS
This section presents the core algorithm of the independence analysis. To simplify the
presentation, we use a small language λ�, and do not differentiate between reads and
writes. Section 5 describes how we extended our analysis to the C full programming
language.

3.1. The Language λ�

Figure 4 presents λ�, a simple task-parallel programming language. λ� is a simply-
typed lambda calculus extended with dynamic memory allocation and updatable refer-
ences, task creation and barrier synchronization. Values include integer constants n,
the unit value () and functions λx . e. Program expressions include variables x, func-
tion application e1 e2, sequencing, memory operations and task operations. Specifically,
expression ref e allocates some memory, initializes it with the result of evaluating e,
and returns a pointer to that memory; expression e1 := e2 evaluates e1 to a pointer and
updates the pointed memory using the value of e2; and expression ! e evaluates e to a
pointer and returns the value in that memory location. Expression task(e1, . . . , en) {e}
evaluates each ei to a pointer and then evaluates the task body e, possibly in parallel.
The task body e must always return () and can only access the given pointers; if e
is evaluated in a parallel task, the task expression immediately returns (). Finally,
expression barrier waits until all tasks issued until this point have been executed.

3.2. Type System
We use a type system to generate a set of constraints C and infer independence of task
arguments. Figures 5(a) and 5(b) shows the type language of λ�, which includes integer

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

I Simply-typed lambda calculus

I Extensions: dynamic memory allocation, task creation,
barrier synchronization

15 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Language λ‖
A:6

Values v ::= n | () | λx . e
Expressions e ::= v | x | e; e | e e | ref e | ! e | e := e

| task(e1, . . . , en) {e} | barrier
Locations ρ ∈ L
CFG Points φ ∈ F
Tasks π ∈ T
Types τ ::= int | unit | (τ, φ) → (τ, φ) | ref ρ(τ)
Constraints C ::= ∅ | C ∪ C | τ ≤ τ | ρ ≤ ρ | φ ≤ φ

| ρ ≤ π | π�π | φ : Barrier | φ : π
Environments Γ ::= · | Γ, x : τ

Fig. 4. λ�: A simple task-based parallel language

Section 3 describes the static analysis we use to discover independent task argu-
ments like a and c above. Inferring that a task argument does not need to be checked
for dependencies requires verifying that no other task can access that argument. In
short, the static analysis infers this independence in three steps. First, we compute
aliasing information for all memory locations in the program. Second, we compute
which tasks can run in parallel; we do not need to check for conflicting arguments be-
tween for example the second and third task in the example of Figure 3, even though a
is accessed by both, because the barrier prohibits them from running at the same time.
Third, we check whether a memory location (through any alias) is never accessed in
parallel by more than one task. We can then safely omit checking this location at run-
time. We can extend this idea by differentiating between read and write accesses, and
allowing for concurrent reads without checking for dependencies, as long as no writes
can happen in parallel.

3. STATIC INDEPENDENCE ANALYSIS
This section presents the core algorithm of the independence analysis. To simplify the
presentation, we use a small language λ�, and do not differentiate between reads and
writes. Section 5 describes how we extended our analysis to the C full programming
language.

3.1. The Language λ�

Figure 4 presents λ�, a simple task-parallel programming language. λ� is a simply-
typed lambda calculus extended with dynamic memory allocation and updatable refer-
ences, task creation and barrier synchronization. Values include integer constants n,
the unit value () and functions λx . e. Program expressions include variables x, func-
tion application e1 e2, sequencing, memory operations and task operations. Specifically,
expression ref e allocates some memory, initializes it with the result of evaluating e,
and returns a pointer to that memory; expression e1 := e2 evaluates e1 to a pointer and
updates the pointed memory using the value of e2; and expression ! e evaluates e to a
pointer and returns the value in that memory location. Expression task(e1, . . . , en) {e}
evaluates each ei to a pointer and then evaluates the task body e, possibly in parallel.
The task body e must always return () and can only access the given pointers; if e
is evaluated in a parallel task, the task expression immediately returns (). Finally,
expression barrier waits until all tasks issued until this point have been executed.

3.2. Type System
We use a type system to generate a set of constraints C and infer independence of task
arguments. Figures 5(a) and 5(b) shows the type language of λ�, which includes integer

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

I Type system generates set of constraints solved by rewriting
rules:

I Inference labels φ and ρ generate control-flow and
points-to graphs

I Constraints for data (ρ1 ≤ ρ2), control (φ1 ≤ φ2), task
memory footprints (ρ ≤ π), can happen in parallel
(π1 ‖ π2) and barrier (φ)

15 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Table of Contents

Motivation

Block-Level Dynamic Dependence Analysis

Static Independence Analysis

Implementation and Evaluation

Conclusions

16 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Implementation Details

I Source-to-source compiler using CIL
I OpenMP and OmpSs-like syntax supported

I Strided arguments, multi-dimensional array tiles, and
dynamic regions

I Locksmith engine for points-to analysis
I Scalable runtime support:

I Concurrent queues, NUMA-aware data allocation and
task scheduling

I Provable low bounds and determinism

17 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Experimental Platform
I Cray XE6 compute node on Hector, 32 GB DRAM,

NUMA

18 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Experimental Results

A:17

! " !# $% &$

'

$

%

#

"

!'

!$

!%

!#

!"

$'

!""!

#$%##

&'()$%

%*+,(-./

01,(/

2
1
*-
34
*5
6
(
47
/
(
8
9

(a) Black-Scholes

! " !# $% &$

'

!'

$'

&'

%'

('

#'

!""!

#$%##

%&'()*+,

-.(),

/
.
&*
01
&2
3
)
14
,
)
5
6

(b) Ferret

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

&'''

&(''

%'''

%(''

('''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(c) Cholesky

! " !# $% &$

'

!'

$'

&'

%'

('

#'

)'

"'

*'

!''

!""!

#$%##

&'()*

+
'
,-
./
,0
1
)
/2
*
)
3
4

(d) GMRES

! " !# $% &$

'

$

%

#

"

!'

!$

!%

!""!

#$%##

&'()*

+
'
,-
./
,0
1
)
/2
*
)
3
4

(e) HPL

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

&'''

&(''

!"#$%

&
"
'(
)*
'+
,
$
*-
,
%
.

/00/

12311

45$623

(f) Jacobi

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(g) SMPSS-FFT

! " !# $% &$

'('

'()

!('

!()

$('

$()

&('

&()

!""!

#$%&'(

)*+%,

-
*
./
01
.2
3
%
14
,
%
5
6

(h) SPLASH-FFT

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(i) Multisort

! " !# $% &$

'

(

!'

!(

$'

$(

&'

&(

%'

!""!

#$%

&'()*

$
'
+,
-.
+/
0
)
.1
*
)
2
3

(j) Intruder

Fig. 7. Experimental comparison

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

19 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Experimental Results

A:17

! " !# $% &$

'

$

%

#

"

!'

!$

!%

!#

!"

$'

!""!

#$%##

&'()$%

%*+,(-./

01,(/

2
1
*-
34
*5
6
(
47
/
(
8
9

(a) Black-Scholes

! " !# $% &$

'

!'

$'

&'

%'

('

#'

!""!

#$%##

%&'()*+,

-.(),

/
.
&*
01
&2
3
)
14
,
)
5
6

(b) Ferret

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

&'''

&(''

%'''

%(''

('''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(c) Cholesky

! " !# $% &$

'

!'

$'

&'

%'

('

#'

)'

"'

*'

!''

!""!

#$%##

&'()*

+
'
,-
./
,0
1
)
/2
*
)
3
4

(d) GMRES

! " !# $% &$

'

$

%

#

"

!'

!$

!%

!""!

#$%##

&'()*

+
'
,-
./
,0
1
)
/2
*
)
3
4

(e) HPL

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

&'''

&(''

!"#$%

&
"
'(
)*
'+
,
$
*-
,
%
.

/00/

12311

45$623

(f) Jacobi

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(g) SMPSS-FFT

! " !# $% &$

'('

'()

!('

!()

$('

$()

&('

&()

!""!

#$%&'(

)*+%,

-
*
./
01
.2
3
%
14
,
%
5
6

(h) SPLASH-FFT

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(i) Multisort

! " !# $% &$

'

(

!'

!(

$'

$(

&'

&(

%'

!""!

#$%

&'()*

$
'
+,
-.
+/
0
)
.1
*
)
2
3

(j) Intruder

Fig. 7. Experimental comparison

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

20 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Experimental Results

A:17

! " !# $% &$

'

$

%

#

"

!'

!$

!%

!#

!"

$'

!""!

#$%##

&'()$%

%*+,(-./

01,(/

2
1
*-
34
*5
6
(
47
/
(
8
9

(a) Black-Scholes

! " !# $% &$

'

!'

$'

&'

%'

('

#'

!""!

#$%##

%&'()*+,

-.(),

/
.
&*
01
&2
3
)
14
,
)
5
6

(b) Ferret

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

&'''

&(''

%'''

%(''

('''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(c) Cholesky

! " !# $% &$

'

!'

$'

&'

%'

('

#'

)'

"'

*'

!''

!""!

#$%##

&'()*

+
'
,-
./
,0
1
)
/2
*
)
3
4

(d) GMRES

! " !# $% &$

'

$

%

#

"

!'

!$

!%

!""!

#$%##

&'()*

+
'
,-
./
,0
1
)
/2
*
)
3
4

(e) HPL

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

&'''

&(''

!"#$%

&
"
'(
)*
'+
,
$
*-
,
%
.

/00/

12311

45$623

(f) Jacobi

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(g) SMPSS-FFT

! " !# $% &$

'('

'()

!('

!()

$('

$()

&('

&()

!""!

#$%&'(

)*+%,

-
*
./
01
.2
3
%
14
,
%
5
6

(h) SPLASH-FFT

! " !# $% &$

'

(''

!'''

!(''

$'''

$(''

!""!

#$%##

&'()$%

*+,(-

.
+
/0
12
/3
4
(
25
4
-
6

(i) Multisort

! " !# $% &$

'

(

!'

!(

$'

$(

&'

&(

%'

!""!

#$%

&'()*

$
'
+,
-.
+/
0
)
.1
*
)
2
3

(j) Intruder

Fig. 7. Experimental comparison

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

21 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Table of Contents

Motivation

Block-Level Dynamic Dependence Analysis

Static Independence Analysis

Implementation and Evaluation

Conclusions

22 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Lessons and Challenges

I Lesson: Task-based parallelism achieves good balance
between productivity and performance

I Lesson: Automatic dependence analysis uncovers more
parallelism and enables further optimization

I Lesson: A new opportunity for parallelizing compilers

I Challenge: Overhead still present in some codes with
low operational intensity (e.g. stencils)

I Challenge: Points-to analysis still limited (even in
simple cases)

I Challenge: no magic recipe, expose analysis options as
user knobs or autotuners

23 / 24

University of
Manchester, July

18, 2012

Dimitrios S.
Nikolopoulos

Motivation

Block-Level
Dynamic
Dependence
Analysis

Static
Independence
Analysis

Implementation
and Evaluation

Conclusions

Acknowledgment

I Collaborators: Angelos Bilas, Angelos Papatriantafyllou,
Polyvios Pratikakis, George Tzenakis, Hans
Vandierendonck

I Funding: EU FP7 (ENCORE, TEXT, I-CORES)

I Infrastructure: Hector (EPCC), BSC

24 / 24

	Motivation
	Block-Level Dynamic Dependence Analysis
	Static Independence Analysis
	Implementation and Evaluation
	Conclusions

