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The occurrence of real spectra

In physical theories spectra are expected to be real

Complex eigenvalues in Quantum Mechanics are usually interpreted
as belonging to dissipative (open) systems

@ Ising quantum spin chain in imagninay field corresponds to
Yang-Lee model,
G.Von Gehlen, J.Phys. A24 (1991) 5371.

@ Solitons in Affine Toda models,
T.Hollowood, Nucl.Phys. B384 (1992) 523.

@ Complex Liouville theory related to Hermitian XXZ-quantum
spin chain,
L.Faddeev and O.Tirkkonen, Nucl.Phys. B453 (1995) 647.
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PT symmetry in quantum systems

The occurrence of real spectra

Without solving the problem, when are the energies real 7
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Boundary conditions: vanish asymptotically on curves in complex plane

Real spectra in non-Hermitian Hamiltonians having P7 -symmetry,
C.M.Bender and S.Boettcher, Phys.Rev.Lett.. 80 (1998)-5243.
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PT symmetry in quantum systems

Identifying Hamiltonians with real spectra

Difficult to predict if the eigenvalues are real beforehand

H|n) = Enltpn)
PT anti-linear: x — —x, p—p, 11— —1,
anti-linear symmetry :
[H,A] =0
unbroken anti-linear symmetry :
Altbn) = ltbn)

En|¢n> = H|7;Z)n> = HA|7;Z)n> = AH|¢n> = E:A|7;Z)n> = E;1k|¢n>

Normal form of antiunitary operators,
E. P. Wigner, J. Math. Phys. 1 (1960) 409.
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PT symmetry in quantum systems

Redefinition of contour: ¢ = 4

HE:4 _ ps _ HZ4

@ Contour z(x) = —21/1 4 1x

1
H=* = p2 + 5P + 16rx% — 16k + 1 (xp* — 32kx)

@ Equivalent to

1 1
=4 _ 6Tp4 +5p+ 16kx> on real line
K

An equivalent Hermitian Hamiltonian for the —x* potential,
H. Jones and J. Mateo, Phys. Rev. D 73 (2006) 085002.
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PT symmetry in quantum systems

Relating Hermitian and non-Hermitian operators

left- and right-eigenvectors are different

(¢n|H = En(en| Hlwn) = Eplon) H' =H

@ Bi-orthogonality

(mlon) =0mn  and ) |on)(¢al =1

@ Dyson map : isospectral — h|¢n) = Ep|in)
h=nHnt=h"|¢n) = plen) = 10" [¢n)
@ Change of metric:  p =1y (unitary evolution)

@ Redefinition of observables:  H(%,p) = h(X, P)

Quasi-Hermitian Operators in Quantum Mechanics,
F. G. Scholtz, H. B. Geyer, and F. Hahne, Ann. Phys. 213 (1992).74.
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PT symmetry in quantum systems

Darboux transformations

Decomposing

d d
- = = 2L
A » +W(x) and A » + W(x)

Considering one of the eigenfunctions of H; as the vacuum of A

.A’l/}(()l)(x) =0 so that W(x) = _71/]6((11))()()
Yo (%)
we can construct a partner with the intertwining property
d2
Ho = —— + Va(x) = A A

Schrodinger operators with complex potential but real spectrum,
F. Cannata, G. Junker and J. Trost, Phys. Lett. A 246 (1998) 219.
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PT symmetry in quantum systems

ODEs and Integrable Lattice Models

d? I(1 +
fp+x2M+axM*1+ng y(x)=0

CENE) = Wly_1, n](+a) DE(E) = W[y, x"](+a)

C(+)(E)D(+)(E) _ w7(2l+1+a)/2 D(f)(w72 E) + w(2/+1+a)/2 D(f)(w2 E)
define the zeros E = E,Ei) of C(E) (T-Q relations).

€ (=) 2
Bethe equations H (%) _ o (H1+a)
n  tw™

n=1

Spectral equivalences, Bethe ansatz equations, and reality properties,
P. Dorey, C. Dunning and R. Tateo, J. Phys. A 34 (2001) 5679.
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PT -symmetric deformations in classical systems

P7T in classical theories

@ Different interesting methods to establish reality of spectra in
Quantum Mechanics

@ Redefinition of Hilbert space is needed to make sense of
non-Hermitian Hamiltonians

@ P7-symmetry stands out as a very convenient guiding
principle for physical systems

@ classical P7 -symmetric theories described by complex
equations which nevertheless correspond to real energies
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PT -symmetric deformations in classical systems

Classical P7 symmetric models

Generate new complex systems potentially interesting
from a physical point of view
= deform known models in a P7 symmetric way

Many possibilities to deform a PDE:
replacing ordinary space derivatives by a P7 -invariant form

Oxf(x) — —1(2f )" = Fre eeN

@ 0%f(x) — fy.c o f..: does not preserve order of PDE
0 If(x) — 0 e = L0 TY(£ )T = e
PT-symmetric extension of the KdV equation,

C. M. Bender et al, J. Phys. A40 (2007) F153.
PT-Symmetric deformations of the KdV equation,

A. Fring, J. Phys. A40 (2007) 4215.



PT -symmetric deformations in classical systems

Complex deformations of KdV equation

KdV Ur + Uty + Uy = 0

@ First deformation:
ur—1u(tuy ) + Usex = 0

€ = 2 two conserved charges: energy and momentum
€ = 2 observation of solitary wave -like solutions

@ Second deformation:
e—=2,2 e—1 _
ur + uuxte(e — 1)(oux )" “ug +e(tux )" U =0
o three conserved charges; more easily constructed

o constitutes a Hamiltonian system

= Highly nonlinear systems
Well behaved solutions
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PT -symmetric deformations in classical systems

P7 -symmetric deformation of Burgers equation

Burgers Ut + Ul = Kl

— U + Ullye = Klxxp with keR, e,u€Z

o -1
=S dmlz—z)™? 0=""E ez —e=p, 9=-1
= e—p+1

@ Solve equation order by order

at order — (2¢ + 1): Ao + 2iekpy = 0,
at order — 2e: Dt0e1 + My — 1D = 0,
at order — (2e — 1): Ox(@e0c,1 + A1k — 1hEDek) =0,

@ Convergent series constructed

@ Necessary condition for integrability (WTC Painlevé test, roughly)
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Nonlinear waves and P7 symmetric Calogero models

The quantum Calogero problem (brief review)

One-dimensional problem of three particles interacting in pairs
according an 712 potential
(possibly with a quadratic confining quadratic well)

3. 92 3 . s
L px? — 200 _ o2 | o) —
; 0x? Jr; (xi — xj)? +;w (xi—=x)|v=Ey

change of coordinates = separation of variables

(centre of mass and polar Jacobi coordinates)

1
R = §(X1JrX24rX3)7

1
r = %\/(xl —x)2+ (2 — x3)2 + (x3 — x1)?,
¢ = arctan \/§(x1 — %)

(a —x3) + (2 — x3)
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Nonlinear waves and P7 symmetric Calogero models

The quantum Calogero problem (brief review)

i 2
x172:R+ri;2¢j:rfl/n§¢ and X3:R\/;rCOS¢.

1d> & 1d 1/[d 9g
3dR? dr?  rdr r2\d¢?® 2sin?3¢

Angular constant of motion

)—E} G(R,1,6) =0,

Radial constant of motion

Centre of mass constant of motion (absorbed as energy shift)

For simplicity w = 0 (Laguerre — Bessel)

Classical problem
1 ., B L 42 9% 2
—mr-+ — =E and —mr + —= = B~.
2 r? 2 ¢ 2sin® 3¢
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Nonlinear waves and P7 symmetric Calogero models

Integrability for classical Calogero problem

@ Classical particle system

1Y 1 g Noo og
ROy D o W= 2 G ny
i=1 7] J#i
@ Lax pair (Moser) N x N matrices
WE
Lj = pidj+ x,-{_xj(l - 0y),
N
- WE . WE g 4
e kz;; Go— xR Ga— P -

dL
PP +[M,L] =0 <« Calogero equations of motion

L(t) = U(t)L(O)U(t)fl = Iy= %trLN : conserved
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Nonlinear waves and P7 symmetric Calogero models

Classical solutions

@ 2 particles

x12(t) = 2R(t) + % FAE(t — t)2,

@ 3 particles

xa(t) = R(t)+ —=r(t)cos¢(t) £ —=r(t)sin(t),

N

where
R(t) = R+ Wt,
B2
r(t) = ?+2E(t—to)2,
o(t) = % cos ! {gao sin {sin71 (w0 cos3¢po) — 3tan (%(t — to))} }
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Nonlinear waves and P7 symmetric Calogero models

N = 3 classical Calogero particles scattering

30 T T T T T
<
~ -
N .
- -
\\ xi ”
. ES e EEE . 4
20 .~ X, e
N X .
~ 3 e
\\ ’f
L ~ 4
10 N -
h -
...
0+

3 particles trajectory
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Nonlinear waves and P7 symmetric Calogero models

Calogero particles as poles of nonlinear waves

@ Burgers uy + (auXX + ﬂuQ)X =0
@ Boussinesq U + (i + Bu? —qu) =0
@ “Multi-pole” solution

a N
Ut =65 (P

Constraints

:—IZQE xi(t) — (1)) 72, :Z(xk(t)ij-(t))’:“
j#k J7#k
and
$(t) = =24y (a(t) ()70, x(t)’ =12 (a(t) — () >+
#k #k
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Nonlinear waves and P7 symmetric Calogero models

Compatibility of constraints with time evolution

@ What constraints are compatible with the Hamiltonian flow?
Airault, McKean, Moser:  Given a multi-particle Hamiltonian

H(X1,y ooy XN, Py ooy PN)  with flow X = g—g and p;j =21
together with conserved charges I, in involution with H,
i.e. vanishing Poisson brackets {H,l,} =0, then the locus of

grad(l,) = 0 s invariant with respect to time evolution.

d
Egradl = {gradl,H} =grad{l,H} — {l,gradH} =

_ o- gagradH B gagradH _ 0
N ox Op op Ox B
— We restrict the flow to the locus of grad(/,) =0
(provided it is not empty)
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Nonlinear waves and P7 symmetric Calogero models

Calogero charges

o I, =Ltr(L")

h = Zpi

i=1

1 N
L = EE ,2 gE ~
i=1 i#j Xi )
1 & pi+p
3 i
ko= 522 , gZTf)z

i#

@ I3-flow restricted to the locus grad(h) =0
= Burgers multi-poles solution

@ />-flow subject to the constraint grad(/3 —vyh) =0
= Boussinesq multi-poles solution (g = —12a)

@ Calogero behaviour for poles in Boussinesq solution
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Nonlinear waves and P7 symmetric Calogero models

Constrained motion

@ Is the locus of interest is empty or not?
o N=3
change of variables
X172(t) = Ao(t)—f—Al(t)iAz(t),
X3(t) = Ao(t) aF )\Al(t)7

Ao(t) — V=g =40 - 1A

2/3y
— 38v7(2+2)
Ao(t) = 7+ (A —1)[g + 167(\ — 1)2A(1)?]’
A(t) = =

(1—N)[g + 167(A — 1)2A(¢)?]
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Nonlinear waves and P7 symmetric Calogero models

Complex motion of Boussinesq singularities

3 second order differential equations of motion (+6)
3 first order constraining equations (-3)
1 conserved quantities used: momentum (-1)

- 1 (g &) v g &)
x2(t) = C°+ﬁt+ﬁ<§(t) v >i4\/§ <€(t)+ g >
1 £(t)

x3(t) = C0+ﬁt6<%7>

with the abbreviation

1

£(t) = [—5472(\/f_ygt +a)+ \/g3’y3 + [54~2(\ /18t + cl)]2] ’

2 constants of integration
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Nonlinear waves and P7 symmetric Calogero models

P7 -symmetric constrained Calogero

Choosing ¢y, c1 € 1R

T (5= 5) — = (@55

If v >0, then P7 : x; — —x; s He = 3
= P7T-symmetry may arise more naturally from field theories

without ad-hoc deformations

The Boussinesq solution

6o !

Jr
2
aiCoy)
2 [ 8277 — 12872t (t) — 4v(18yp? — g)&(t)? + 12v¢€(t)° + £(1)*
(8272 + 6872 € (t) + 7(3679? + g)E(t)? — bypE(t)3 + £(1)*)?
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Nonlinear waves and P7 symmetric Calogero models

Constraint Boussinesq solution

0
Re[u(x)]

3 L L L L L L L

-80 -60 -40 20 0 20 40 60 80

Wave profile evolution for Boussinesq 3-poles solution.
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Nonlinear waves and P7 symmetric Calogero models

Calogero deformations: P7-symmetric Weyl reflections

ZPHFZ i — q;) Zp,+z

i#j aEA

Hc(q, p) — Hp7(§,p) = Z ?

a; — &; = R(e)a; + (e Zgj

J#i
G = R(e)gr —1(gl(e)(q2 — g3)
G = R(e)g —1gl(e)(g3 — aq1)
3 = R(e)gz —1Ggl(e)(q1 — g2)

‘PT -symmetric deformations of Calogero models,
A. Fring and M. Znojil, J. Phys. A 40 (2008) 194010.

@ This constitutes a non-equivalent deformation
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Nonlinear waves and P7 symmetric Calogero models

A less obvious connection

The equation
uy + uy + =0

is solved by the ansatz

_,3°0 SISO

= i(t) = z(t)

Not conservative
Instead of solving this system, note that

B f(x —t)
u(x,t) = T = 1)
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Nonlinear waves and P7 symmetric Calogero models

The new poles

@ Assuming a multi-pole expansion for the arbitrary function
N
f(x) =
(=3,
i=1

@ Determine the poles of original field u(x,t)

aj

with o, a; € C

o N=3
zn(t) = t-— # + s.(t) + s_(¢)
na) = =20 L4012 [0 - 5 ()
where we abbreviated
() = [(0xVAOT@]
He) = 9a(t)b(t) —2574c(t) —2a (t)7 o) = 3b(t) — a“(t)

9
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Nonlinear waves and P7 symmetric Calogero models

Equivalence with Boussinesq poles

a(t) = —a1—Qp — Qa3 — t(31+32+a3)
b(t) = i+ apaz + ajaz + tlaidos + axds + asdo]
c(t) = —tlamaz +a2aza1 + a3o12) — 203

A subclass of these solutions is equivalent to Boussinesq poles

3
aj = —% (Oé,'—OzJ')_Z, g:4zla,~og—a,2
=

J#i =1
1<J
3
1 2
C():g.é o, C1:2— H (Otj+04k7204/), y=1
=1l 1<j<k<3
Jsk#l

= ldentical singularity structure for different nonlinear wave eqtns
= Possible to identify constrained (compatible) Hamiltonian flow
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Nonlinear waves and P7 symmetric Calogero models

Conclusions

@ PT-symmetry useful in quantum mechanics

@ Identifying potentially interesting deformations of integrable
systems by using ideas of P7 -symmetry

@ Complex particle systems arising from real valued nonlinear
partial differential equations

@ Possibility to associate P7 -symmetry to more natural
complex extensions

Work in collaboration with Andreas Fring.
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