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Abstract

Whenever we say the words “fluid flows” or “shape changes” we enter
the realm of infinite-dimensional geometric mechanics. Water, for example,
flows. In fact, Euler’s equations tell us that water flows a particular way.
Namely, it flows to get out of its own way as adroitly as possible.

The shape of water changes by smooth invertible maps called diffeos (short
for diffeomorphisms). The flow responsible for this optimal change of shape
follows the path of shortest length, the geodesic, defined by the metric of
kinetic energy.

Not just the flow of water, but the optimal morphing of any shape into
another follows one of these optimal paths. These lectures will be about
the commonalities between fluid dynamics and shape changes and will be
discussed in the language most suited to fundamental understanding − the
language of geometric mechanics.

A common theme will be the use of momentum maps and geometric
control for steering along the optimal paths using emergent singular solutions
of the initial value problem for a nonlinear partial differential equation called
EPDiff, that governs metamorphosis along the geodesic flow of the diffeos.
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Background and motivation:
Emergent Singularities
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Background and motivation:
Emergent Singularities

Many continuum models in physics possess singular delta-like solutions:

• Euler/Navier-Stokes vortices,

(e.g., vortex sheets and filaments in 3D; point vortices in 2D)

• Magnetic vortex lines in MHD plasmas,

(e.g., in sunspots)

• Collisionless Vlasov-Poisson kinetic theory,

(e.g., in self-gravitating clusters of stars and galaxies in nebulae)

• Certain integrable Hamiltonian continuum systems (shallow water)

We are interested in singular solutions

that emerge from smooth initial conditions.
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Figure 1: This image shows the magnetic field lines in Fe-Ni (iron-nickel) nanoparticles using electronic
holography. The concentric circles of field lines correspond to the magnetic vortex formed in the central
particle of 70 nm (1) in diameter. The colours indicate the local orientation of the field. The total width
of the image is 140 nm. (Centre d’Etudes de Chimie Métallurgique and University of Cambridge).
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Figure 2: This image zooms 64X to display vortices in numerical simulations of turbulence. – P.
Minnini, NCAR
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Figure 3: This image shows light emission from particles in the sun following magnetic field lines in
the vicinity of a sunspot.
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Figure 4: Four different images of the crab Nebula.
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Figure 5: This image shows a trailing vortex from an aircraft wing, visualised by red smoke.
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Emergent singularities: Camassa-Holm and EPDiff equations

• The CH equation is a 1+1 integrable PDE for shallow water dynamics

• Its soliton solutions (peakons) emerge spontaneously from any initially

confined velocity distribution.

Figure 6: CH equation: singular solutions emerge from an initial Gaussian velocity.
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• Extending to any dimension yields the EPDiff equation, a general

geodesic flow on the diffeomorphism group

• EPDiff (Euler-Poincaré equation on the diffeomorphisms) also exhibits

emergent singular solutions in 2D and 3D

Figure 7: CH equation: singular solutions collide and exchange momentum in 2D.

• EPDiff has a range of applications, from turbulence to imaging science
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Metamorphosis

Metamorphosis is an optimal-control matching problem that

seeks geodesics on semidirect-product groups – this means

that it fits perfectly into the Euler-Poincaré framework!

Figure 8: Geodesic flow on DiffsF governs image morphing. The figure plots the
morphing process in the (conjugate) F-variable as a function of time. (Figure from DD
Holm, A Trouvé and L.Younes, Quart Appl Math, 2009.)
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D’Arcy Thompson’s transformative approach (1917)

Figure 9: Thompson’s illustration of the transformations of shapes of various species of
fish (top row) into others (bottom row). From Wallace Arthur, D’Arcy Thompson and
the theory of transformations. Nature Reviews Genetics 7, 401-406 (May 2006).
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1 BRIEF HISTORY OF IDEAL CONTINUUM MOTION

Lecture #1, EPDiff

1 Brief history of ideal continuum motion

This lecture explains how the Euler equations of ideal incompressible

fluid motion may be recognized as Euler–Poincaré equations EPDiffV ol
defined on the dual of the tangent space at the identity TeG =

TeDiffV ol(D) of the divergence-free right invariant vector fields X(D)

over the domain D. Then it develops these ideas to apply to EPDiff, the

Euler–Poincaré equations on the full diffeomorphism group.

Arnold [Arn66] applied the Lagrangian and Hamiltonian theories of geo-

metric mechanics to rederive the Euler fluid equations for incompressible

motion of an ideal fluid, with:
18



1 BRIEF HISTORY OF IDEAL CONTINUUM MOTION

• configuration space Q = G = DiffV ol(D), the volume preserving

diffeomorphisms (smooth invertible maps with smooth inverses) of

the region D occupied by the fluid.

• The tangent vectors for the maps, TG = T DiffV ol(D), represent

the space of fluid velocities, which must satisfy appropriate physical

conditions at the boundary of the region D.

• Group multiplication in G = DiffV ol(D) is composition of the smooth

invertible volume-preserving maps.

Arnold’s geometric approach for incompressible ideal fluid motion has been

extended and applied to many other cases of ideal continuum motion. See,

e.g., [HMRW85, HMR98] for references, discussion and progress in these

more general applications.

19



1 BRIEF HISTORY OF IDEAL CONTINUUM MOTION

Definition 1 (EPDiff)

EPDiff is the family of equations governing geodesic motion on the full

diffeomorphism group with respect to whatever right invariant metric is

chosen on the tangent space of the diffeomorphisms.

Remark 1

Arnold’s result [Ar1966] that the Euler fluid equations describe geodesic

motion on the volume-preserving diffeomorphisms may be understood by

interpreting these equations as EPDiffV ol with respect to the right invariant

L2 metric of the Eulerian fluid velocity supplied by the fluid’s kinetic energy.

If potential energy due to advected quantities is present in an ideal contin-

uum flow, then reduction by right invariance of Hamilton’s principle under

the diffeomorphisms produces the EP theorem with advected quantities

[HMR98].
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2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

2 Geometric setting of ideal continuum motion

Definition 2 Points in a domain D represent the positions of material parti-

cles of the system in its reference configuration. These points are denoted

by X ∈ Rn and called the particle labels.

• A configuration, which we typically denote by g, is an element of Diff(D),

the space of diffeomorphisms from D to itself.

• A fluid motion, denoted as gt or alternatively as g(t), is a time-dependent

curve in Diff(D), providing an evolutionary sequence of diffeomorphism

from the reference configuration to the current configuration in D.

The configuration space Diff(D) is a group, with the group operation being

composition and the group identity being the identity map. This group acts

on D in the obvious way: g · X := g(X), where we are using the ‘dot’

notation ( · ) for the group action.
21



2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

Definition 3 During a motion gt or g(t), the particle labelled by X de-

scribes a path in D along a locus of points

x(X, t) := gt(X) = g(t) ·X , (1)

which are called the Eulerian or spatial points of the path. This locus of

points in Rn is also called the Lagrangian, or material, trajectory, because

a Lagrangian fluid parcel follows this path in space.

Definition 4 The Lagrangian, or material, velocity U of the system along

the motion gt or g(t) is defined by taking the time derivative of the La-

grangian trajectory (1) keeping the particle labels X fixed:

U(X, t) :=
∂

∂t
gt ·X =

∂

∂t
x(X, t) . (2)

Thus U(X, t) is the velocity of the particle with label X at time t.

The Eulerian, or spatial, velocity u of the system is velocity expressed as a

function of spatial position and time, meaning that if x = x(X, t) = gt(X)
22



2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

g 1-

x

CurrentReference

g(t)

(t)

X
Figure 10: The map from Lagrange reference coordinates X in the fluid to the current
Eulerian spatial position x is performed by the time-dependent diffeomorphism g(t), so
that x(t,X) = g(t) ·X.

then

u(x, t) := U(X, t) = U(g−1
t (x), t) . (3)

Thus, u(x, t) is velocity at time t of the particle currently in position x.
23



2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

Remark 2 (Time-dependent vector fields) The Eulerian velocity u can also

be regarded as a time-dependent vector field ut ∈ X(D), where ut(x) :=

u(x, t). Similarly, we write Ut(X) := U(X, t), though this is not really a

vector field since Ut(X) is a vector based at x = x(X, t) rather than X.

It follows from eqn (3) that

Ut = ut ◦ gt . (4)

In this sense, the Lagrangian velocity field at a particular time is a right

translation of the Eulerian velocity field. This observation leads to consid-

eration of the Lie-group structure of Diff(D).

Definition 5 Given a path g(t) in Diff(D), the corresponding Lagrangian

velocity fields Ut are also denoted ġ(t) or ∂
∂tg(t). We use the ‘dot’ notation,

ġ(t) ·X := ġ(t)(X) = Ut(X) =
∂

∂t
gt ·X.

For a given t, the velocity field ġ(t) is called a tangent vector to Diff(D)

at g(t).
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2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

Definition 6 The tangent space of Diff(D) at g, denoted Tg Diff(D), is

the set of all tangent vectors to Diff(D) at g, i.e. all possible Lagrangian

velocity fields Ut (for a fixed t) such that Ut(X) ∈ Tg(X)D for all X. The

union of all of these tangent spaces is the tangent bundle T Diff(D).

Remark 3 Any smooth vector field on D can be expressed as ġ(0) for g(t)

equal to the flow of the vector field, so

TeDiff(D) = X(D),

where X(D) is the set of smooth vector fields on D. In general, we have

Ut = ut ◦ gt ,

and ut (for a fixed t) is a vector field, so general tangent vectors are right

translations of vector fields, and

Tg Diff(D) = {u ◦ g : u ∈ X(D)}
= {smooth U : D → TD | U(X) ∈ Tg(X)D for all X}.
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2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

Remark 4 (Tangent lift of right translation is Eulerian velocity)

Let ϕ ∈ Diff(D) and let Rϕ be the right translation map g 7→ g ◦ ϕ. The

tangent lift of Rϕ is the map TRϕ : T Diff(D) → T Diff(D) defined as

follows: Let U = ġ(t0). Then

TRϕ(U) = TRϕ

(
d

dt

∣∣∣∣
t0
gt

)
:=

d

dt

∣∣∣∣
t0

(gt ◦ ϕ) = U ◦ ϕ ,

since for all X ∈ D,

d

dt

∣∣∣∣
t0

(gt ◦ ϕ)(X) =
d

dt

∣∣∣∣
t0

(gt ◦ ϕ(X)) =

(
d

dt

∣∣∣∣
t0
gt

)
· ϕ(X)) = U ◦ ϕ(X).

We use the notation Uϕ = TRϕ(U). With this notation, the Eulerian

velocity corresponding to a flow g(t) is

ut = ġ(t)g−1(t) .

The Lie algebra of Diff(D) is X(D) with the Lie bracket defined by

[u, v]L := [XL
u , X

L
v ](e) = adu v, for all u, v ∈ X(D).

26



2 GEOMETRIC SETTING OF IDEAL CONTINUUM MOTION

Remark 5 (A matter of signs) Let Φu(t) and Φv(t) be the flows of vector

fields u and v, respectively. The adjoint action of Diff(D) on X(D) is

Adgv =
d

dt

∣∣∣∣
t=0

g ◦ Φv(t) ◦ g−1 = TLg ◦ v ◦ g−1 = g∗v ,

the push-forward of v by g. It follows that the adjoint action of X(D) on

itself is

aduv =
d

dt

∣∣∣∣
t=0

(Φu(t))∗v = −
d

dt

∣∣∣∣
t=0

(Φu(t))∗v = −Lu v = −[u, v],

(5)

where the bracket on the right is the standard Jacobi–Lie bracket of the

vector fields. In components (summing on repeated indices),

−(aduv)i = [u, v]i = uj
∂vi

∂xj
− vj

∂ui

∂xj
,

or − aduv = [u,v] = u · ∇v − v · ∇u . (6)

Thus, the Lie bracket on X(D), considered as the Lie algebra of Diff(D),

is minus the standard Jacobi-Lie bracket.
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3 EULER–POINCARÉ REDUCTION FOR CONTINUA

3 Euler–Poincaré reduction for continua

Euler–Poincaré reduction starts with a G-invariant Lagrangian L : TG →
R defined on the tangent bundle of a Lie group G.

Definition 7 A Lagrangian L : TG → R is said to be right G-invariant

if L(TRh(v)) = L(v), for all v ∈ TgG and for all g, h ∈ G. In shorter

notation, right invariance of the Lagrangian may be written as

L(g(t)h, ġ(t)h) = L(g(t), ġ(t)) ,

for all h ∈ G.

Remark 6 For a G-invariant Lagrangian defined on TG, reduction by sym-

metry takes Hamilton’s principle from TG to TG/G ' g. Stationarity of

the symmetry-reduced Hamilton’s principle yields the Euler–Poincaré equa-

tions on g∗. As we shall discuss later, the corresponding reduced Legendre

transformation yields the now-standard Lie–Poisson bracket for the Hamil-

tonian formulation of these equations.
28



3 EULER–POINCARÉ REDUCTION FOR CONTINUA

Theorem 1 (Euler–Poincaré reduction)
Let G be a Lie group and L : TG→ R be a right invariant Lagrangian.
Let ` := L|g : g→ R be its restriction to g. For a curve g(t) ∈ G, let

u(t) = ġ(t) · g(t)−1 := Tg(t)Rg(t)−1ġ(t) ∈ g ,

so L(g(t), ġ(t)) = L(e, ġ(t)g(t)−1) =: `(u).

Then the following four statements are equivalent:

(i) g(t) satisfies the Euler–Lagrange equations for Lagrangian L defined on
G.

(ii) The variational principle

δ
∫ b
a
L(g(t), ġ(t))dt = 0 , (7)

holds, for variations with fixed endpoints.
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3 EULER–POINCARÉ REDUCTION FOR CONTINUA

(iii) The (right invariant) Euler–Poincaré equations hold:

d

dt

δ`

δu
= − ad∗u

δ`

δu
. (8)

(iv) The variational principle

δ
∫ b
a
`(u(t)) dt = 0 , (9)

holds on g, using variations of the form

δu = v̇ + [u, v] , (10)

where u(t) is an arbitrary path in g that vanishes at the endpoints, i.e.

u(a) = u(b) = 0.
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3 EULER–POINCARÉ REDUCTION FOR CONTINUA

Remark 7 (Avoiding analytical technicalities) We identify the Lie group

G with the smooth invertible maps whose inverses are also smooth; that

is, we identify G with Diff(D) the group of diffeomorphisms acting on the

domain D. The corresponding Lie algebra will be the algebra of smooth

vector fields X(D) endowed with the ad-operation given by (minus) the

Jacobi–Lie bracket.

We will forego any analytical technicalities that may arise in making this

identification.

The interested reader may consult Ebin and Marsden [EM70] for an ap-

proach to the analytical issues that arise in the volume-preserving case.

The corresponding issues for the full diffeomorphism group remain an ac-

tive field of current research.
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4 EPDIFF:
EULER–POINCARÉ FOR DIFFEOMORPHISMS

4 EPDiff:

Euler–Poincaré for diffeomorphisms

4.1 The n-dimensional EPDiff equation

Eulerian geodesic motion of a fluid in n dimensions is generated as an

EP equation via Hamilton’s principle, when the Lagrangian is given by the

kinetic energy. The kinetic energy defines a norm ‖u‖2 for the Eulerian

fluid velocity, represented by the contravariant vector function u(x, t) :

Rn×R→ Rn. The choice of the kinetic energy as a positive functional of

fluid velocity u is a modelling step that depends upon the physics of the

problem being studied. We shall choose the kinetic-energy Lagrangian,

` = Lg =
1

2
‖u‖2

Qop =
1

2

∫
u ·m dV with m := Qopu . (11)
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

This Lagrangian may also be expressed as the L2 pairing,

` =
1

2

〈
u , m

〉
=

1

2

∫
u ·Qopu dV , (12)

where, in a coordinate basis, the components of the vector field u and the

1-form density m are defined by

u = uj
∂

∂xj
= u · ∇ and m = midx

i ⊗ dV = m · dx⊗ dV .

We use the same font for a quantity and its dual. In particular, italic font

denotes vector field u and 1-form density m, and bold denotes vector u

and covector m. In eqns (11) and (12), the positive-definite, symmetric

operator Qop defines the norm ‖u‖, for appropriate (homogeneous, say, or

periodic) boundary conditions. Conversely, the spatial velocity vector u is

obtained by convolution of the momentum covector m with the Green’s

function for the operator Qop. This Green’s function G is defined by the

vector equation

QopG = δ(x) ,
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

in which δ(x) is the Dirac measure and G satisfies appropriate boundary

conditions. Consequently,

u(x) = (G ∗m)(x) =
∫
G(x,x′)m(x′) dx′ . (13)

For more discussion of Green’s functions for linear differential operators,

see [Tay96].

Remark 8 An analogy exists between the kinetic energy in eqn (11) based

on the norm ‖u‖Qop and the kinetic energy for the rigid body. In this

analogy, the spatial velocity vector field u corresponds to body angular

velocity, the operator Qop to moment of inertia, and G to its inverse.

Remark 9 As defined earlier, the EPDiff equation is the Euler–Poincaré

equation (8) for the Eulerian geodesic motion of a fluid with respect to

norm ‖u‖. Its explicit form is given in the notation of Hamilton’s principle

by

d

dt

δ`

δu
+ ad∗u

δ`

δu
= 0 , in which `[u] =

1

2
‖u‖2 . (14)
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

Definition 8 The variational derivative of ` is defined by using the L2

pairing between vector fields and 1-form densities as

δ`[u] =
〈
δ`

δu
, δu

〉
=
∫
δ`

δu
· δu dV . (15)

Computing EPDiff: The variational derivative with respect to the vector

field u is the one-form density of momentum given as in eqn (11),

δ`

δu
=
δ`

δu
· dx⊗ dV = m, (16)

which has vector components given by

δ`

δu
= Qopu = m . (17)

In addition, ad∗ is the dual of the vector-field ad-operation (minus the

vector-field commutator) with respect to the L2 pairing,

〈ad∗um, v〉 = 〈m, aduv〉 , (18)
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

where u and v are vector fields. The notation adu v from eqn (5) denotes

the adjoint action of the right Lie algebra of Diff(D) on itself. The pairing

in eqn (18) is the L2 pairing. Hence, upon integration by parts, one finds

〈ad∗um, v〉 = 〈m, aduv〉

= −
∫
mi

(
uj
∂vi

∂xj
− vj

∂ui

∂xj

)
dV

=
∫ (

∂

∂xj

(
miu

j
)

+mj
∂uj

∂xj

)
vi dV ,

for homogeneous boundary conditions. In a coordinate basis, the preceding

formula for ad∗um has the coordinate expression in Rn,(
ad∗um

)
i
dxi ⊗ dV =

(
∂

∂xj
(miu

j) +mj
∂uj

∂xi

)
dxi ⊗ dV . (19)

In this notation, the abstract EPDiff equation (14) may be written explicitly

in Euclidean coordinates as a partial differential equation for a covector

function m(x, t) : Rn ×R1 → Rn.
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

Namely, the EPDiff equation is given in Euclidean coordinates as

∂

∂t
m + u · ∇m︸ ︷︷ ︸

Convection
+ (∇u)T ·m︸ ︷︷ ︸

Stretching

+ m(div u)︸ ︷︷ ︸
Expansion

= 0 . (20)

Here, one denotes (∇u)T · m =
∑
jmj∇uj. To explain the terms in

underbraces, we rewrite EPDiff as preservation of the one-form density

of momentum along the characteristic curves of the velocity. In vector

coordinates, this is

d

dt

(
m · dx⊗ dV

)
= 0 along

dx

dt
= u = G ∗m . (21)

This form of the EPDiff equation also emphasizes its non-locality, since the

velocity is obtained from the momentum density by convolution against the

Green’s function G of the operator Qop, as in eqn (13).
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

One may check that the characteristic form of EPDiff in eqn (21) recovers

its Eulerian form by computing directly the result that

d

dt

(
m · dx⊗ dV

)
=

dm

dt
· dx⊗ dV + m · d

dx

dt
⊗ dV + m · dx⊗

(
d

dt
dV

)
=
(
∂

∂t
m + u · ∇m +∇uT ·m + m(div u)

)
· dx⊗ dV = 0 ,(22)

along

dx

dt
= u = G ∗m .

This calculation explains the terms convection, stretching and expansion

in the under-braces in eqn (20).
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4.1 The n-dimensional EPDiff equation
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

One may check that the characteristic form of EPDiff in eqn (21) recovers

its Eulerian form by computing directly the result that

d

dt

(
m · dx⊗ dV

)
=

dm

dt
· dx⊗ dV + m · d

dx

dt
⊗ dV + m · dx⊗

(
d

dt
dV

)
=
(
∂

∂t
m + u · ∇m +∇uT ·m + m(div u)

)
· dx⊗ dV = 0 ,(22)

along

dx

dt
= u = G ∗m .

This calculation explains the terms convection, stretching and expansion

in the under-braces in eqn (20).

Remark 10 In 2D and 3D, the EPDiff equation (20) may also be written

equivalently in terms of the operators div, grad and curl as,

∂

∂t
m− u× curl m +∇(u ·m) + m(div u) = 0 . (23)
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4.2 Variational derivation of EPDiff
4 EPDIFF:

EULER–POINCARÉ FOR DIFFEOMORPHISMS

4.2 Variational derivation of EPDiff

The EPDiff equation (20) may be derived by following the proof of the

EP reduction theorem leading to the Euler–Poincaré equations for right-

invariance in the form of eqn (14). Following the calculation for the present

right invariant case in the continuum notation yields

δ
∫ b
a
l(u)dt =

∫ b
a

〈
δl

δu
, δu

〉
dt =

∫ b
a

〈
δl

δu
,

dv

dt
− aduv

〉
dt

=
∫ b
a

〈
δl

δu
,

dv

dt

〉
dt−

∫ b
a

〈
δl

δu
, aduv

〉
dt

= −
∫ b
a

〈
d

dt

δl

δu
+ ad∗u

δl

δu
, v

〉
dt ,

where, as in (10), we have set

δu =
dv

dt
− aduv , (24)

for the variation of the right invariant vector field u and 〈· , ·〉 is the pairing

between elements of the Lie algebra and its dual.
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In our case, 〈· , ·〉 is the L2 pairing between vector fields and 1-form den-

sities in eqn (15), written in components as〈
δl

δu
, δu

〉
=
∫

δl

δui
δui dV .
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In our case, 〈· , ·〉 is the L2 pairing between vector fields and 1-form den-

sities in eqn (15), written in components as〈
δl

δu
, δu

〉
=
∫

δl

δui
δui dV .

This L2 pairing yields the component form of the EPDiff equation and

its Noether Theorem as∫ b
a

〈
δl

δu
, δu

〉
dt =

∫ b
a

dt
∫

δl

δui

(
∂vi

∂t
+ uj

∂vi

∂xj
− vj

∂ui

∂xj

)
dV

= −
∫ b
a

dt
∫ {

∂

∂t

δl

δui
+

∂

∂xj

(
δl

δui
uj
)

+
δl

δuj
∂uj

∂xi

}
vi dV

+
∫ b
a

dt
∫ {

∂

∂t

(
δl

δui
vi
)

+
∂

∂xj

(
δl

δui
viuj

)}
dV . (25)

40



4.2 Variational derivation of EPDiff
4 EPDIFF:
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〉
=
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This L2 pairing yields the component form of the EPDiff equation and
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a

〈
δl

δu
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〉
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a
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∫

δl

δui

(
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∂t
+ uj
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∂xj

)
dV

= −
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a
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∫ {

∂

∂t

δl

δui
+

∂

∂xj

(
δl

δui
uj
)

+
δl

δuj
∂uj

∂xi

}
vi dV

+
∫ b
a

dt
∫ {

∂

∂t

(
δl

δui
vi
)

+
∂

∂xj

(
δl

δui
viuj

)}
dV . (25)

When `[u] = 1
2‖u‖

2, EPDiff describes geodesic motion on the diffeomor-

phisms with respect to the norm ‖u‖.
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EULER–POINCARÉ FOR DIFFEOMORPHISMS

4.3 Noether’s theorem for EPDiff

Noether’s theorem associates conservation laws to continuous symmetries

of a Lagrangian. See, e.g., [Olv00] for a clear discussion of the classical

theory. Momentum and energy conservation for the EPDiff equation in eqn

(20) readily emerge from Noether’s theorem, since the Lagrangian in eqn

(11) admits space and time translations. That is, the action for EPDiff,

S =
∫
`[u]dt =

∫
1

2
‖u‖2dt ,

is invariant under the following transformations,

xj → x′j = xj + cj and t→ t′ = t+ τ , (26)

for constants τ and cj, with j = 1, 2, 3. Noether’s theorem then im-

plies conservation of corresponding momentum components mj, with j =

1, 2, 3, and energy E of the expected forms,

mj =
δ`

δuj
and E =

δ`

δuj
uj − `[u] , (27)

which may be readily verified.
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Exercise 1 Show that the EPDiff equation (14) may be written as(
∂

∂t
+ Lu

)(
m · dx⊗ dV

)
= 0 , (28)

where Lu is the Lie derivative with respect to the vector field with com-

ponents u = G ∗m. How does the Lie-derivative form of EPDiff in eqn

(28) differ from its characteristic form (21)? Hint: compare the coordi-

nate expression obtained from the dynamical definition of the Lie derivative

with the corresponding expression obtained from its definition via Cartan’s

formula.

Exercise 2 Show that EPDiff in 1D may be written as

mt + umx + 2mux = 0 . (29)

How does the factor of 2 arise in this equation?

Hint: Take a look at eqn (20).

Exercise 3 Write the EPDiff equation in coordinate form (20) for (a) the

L2 norm and (b) the H1 norm (L2 norm of the gradient) of the spatial

fluid velocity.
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Exercise 4 Verify that the EPDiff equation (20) conserves the spatially

integrated momentum and energy in eqn (27). Hint: for momentum con-

servation look at eqn (25) when vj = cj for spatial translations.
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EPDiff solution behaviour

This lecture discusses the coherent particle-like properties of the unidi-

rectional singular solutions of the EPDiff equation (29).

These singular solutions emerge from any smooth spatially confined ini-

tial velocity profile u(x, 0).

After emerging, they dominate the evolution in interacting fully nonlin-

early by exchanging momentum in elastic collisions.

The mechanism for their emergence is proven to be pulse steepening due

to nonlinearity.

Several examples of the dynamics among singular solutions are given.
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5 EPDiff in 1D: The CH equation
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Figure 11: Under the evolution of the EPDiff equation (30), an ordered wave train
of peakons emerges from a smooth localized initial condition (a Gaussian). The spatial
profiles at successive times are offset in the vertical to show the evolution. The peakon
wave train eventually wraps around the periodic domain, thereby allowing the leading
peakons to overtake the slower peakons from behind in collisions that conserve momentum
and preserve the peakon shape but cause phase shifts in the positions of the peaks, as
discussed in [CH93].
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Consider the following particular case of the EPDiff equation (29) in one

spatial dimension,

mt + umx + 2mux = 0 with m = (1− α2∂2
x)u , (30)

in which the fluid velocity u is a function of position x on the real line

and time t. This equation governs geodesic motion on the smooth in-

vertible maps (diffeomorphisms) of the real line with respect to the metric

associated with the H1 Sobolev norm of the fluid velocity given by

‖u‖2
H1 =

∫
(u2 + α2u2

x) dx . (31)

The peakon is the solitary travelling wave solution for the EPDIff equation

(30),

u(x, t) = c e−|x−ct|/α . (32)

The peakon travelling wave moves at a speed equal to its maximum height,

at which it has a sharp peak (jump in derivative).
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The spatial velocity profile e−|x|/α is the Green’s function for the Helmholtz

operator (1−α2∂2
x) on the real line with vanishing boundary conditions at

spatial infinity. In particular, it satisfies

(1− α2∂2
x)e−|x−ct|/α = 2αδ(x− ct) . (33)

A novel feature of the EPDiff equation (30) is that it admits solutions

representing a wave train of peakons

u(x, t) =
N∑
a=1

pa(t)e−|x−qa(t)|/α . (34)

By eqn (33), this corresponds to a sum over delta functions representing

the singular solution in momentum,

m(x, t) = 2α
N∑
a=1

pa(t) δ(x− qa(t)) , (35)

in which the delta function δ(x− q) is defined by

f(q) =
∫
f(x)δ(x− q) dx , (36)
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for an arbitrary smooth function f . Such a sum is an exact solution of the

EPDiff equation (30) provided the time-dependent parameters {pa} and

{qa}, a = 1, . . . , N , satisfy certain canonical Hamiltonian equations that

will be discussed later.

Remark 11 The peakon-train solutions of EPDiff are an emergent phe-

nomenon. A wave train of peakons emerges in solving the initial-value

problem for the EPDiff equation (30) for essentially any spatially confined

initial condition. An example of the emergence of a wave train of peakons

from a Gaussian initial condition is shown in Figure 11.
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5.1 Steepening lemma: the peakon-formation mechanism

Lemma 1 (Steepening lemma [CH93])

Suppose the initial profile of velocity u(0, x) has an inflection point at

x = x to the right of its maximum, and otherwise it decays to zero in each

direction sufficiently rapidly for the H1 Sobolev norm of the fluid velocity

in eqn (31) to be finite. Then, the negative slope at the inflection point

will become vertical in finite time.

Remark 12 Suppose the initial condition is anti-symmetric, so the in-

flection point at u = 0 is fixed and dx/dt = 0, due to the symmetry

(u, x) → (−u,−x) admitted by eqn (75). In this case, M = 0 and no

matter how small |s(0)| (with s(0) < 0) verticality s → −∞ develops at

x in finite time.

Remark 13 The steepening lemma indicates that travelling wave solutions

of the EPDiff equation (30) cannot have the sech2 shape that appears for
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KdV solitons, since inflection points with sufficiently negative slope can

lead to unsteady changes in the shape of the profile if inflection points are

present.

Remark 14 Numerical simulations show that the presence of an inflection

point of negative slope in any confined initial velocity distribution triggers

the steepening lemma as the mechanism for the formation of the peakons.

Namely. the initial (positive) velocity profile “leans” to the right and

steepens, then produces a peakon that is taller than the initial profile, so it

propagates away to the right. This process leaves a profile behind with an

inflection point of negative slope; so it repeats, thereby producing a wave

train of peakons with the tallest and fastest ones moving rightward in order

of height. Remarkably, this recurrent process produces only peakons.

Remark 15 The EPDiff equation (30) arises from a shallow water wave

equation in the limit of zero linear dispersion in one dimension. As we shall

see, the peakon solutions (35) for EPDiff generalize to higher dimensions

and other kinetic energy norms.
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Exercise 5 Verify that the EPDIff equation (30) preserves the H1 norm

(31).

Exercise 6 Verify that the peakon formula (32) provides the solitary trav-

elling wave solution for the EPDIff equation (30).

Exercise 7 Verify formula (33) for the Green’s function. Why is this for-

mula useful in representing the travelling-wave solution of the EPDIff equa-

tion (30)?
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6 Shallow-water background for peakons

The EPDiff equation (30) whose solutions admit peakon wave trains (34)

may be derived by taking the zero-dispersion limit of another equation

obtained from Euler’s fluid equations by using asymptotic expansions for

shallow water waves [CH93]. Euler’s equations for irrotational incompress-

ible ideal fluid motion under gravity with a free surface have an asymptotic

expansion for shallow water waves that involves two small parameters, ε

and δ2, with ordering ε ≥ δ2. These small parameters are ε = a/h0 (the

ratio of wave amplitude to mean depth) and δ2 = (h0/lx)2 (the squared

ratio of mean depth to horizontal length, or wavelength).
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6 Shallow-water background for peakons

The EPDiff equation (30) whose solutions admit peakon wave trains (34)

may be derived by taking the zero-dispersion limit of another equation

obtained from Euler’s fluid equations by using asymptotic expansions for

shallow water waves [CH93]. Euler’s equations for irrotational incompress-

ible ideal fluid motion under gravity with a free surface have an asymptotic

expansion for shallow water waves that involves two small parameters, ε

and δ2, with ordering ε ≥ δ2. These small parameters are ε = a/h0 (the

ratio of wave amplitude to mean depth) and δ2 = (h0/lx)2 (the squared

ratio of mean depth to horizontal length, or wavelength).

In one spatial dimension, EPDiff is the zero-dispersion limit of the Camassa–

Holm (CH) equation for shallow water waves, which is the b = 2 case of

the following b-equation, that results from the asymptotic expansion for

shallow water waves,

mt + c0ux + umx + bmux − γuxxx = 0 . (37)
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Here, m = u − α2uxx is the momentum variable, and the constants α2

and γ/c0 are squares of length scales. At linear order in the asymptotic

expansion for shallow water waves in terms of the small parameters ε and

δ2, one finds α2 → 0, so that m → u in (37). In this case, the famous

Korteweg–de Vries (KdV) soliton equation is recovered for b = 2,

ut + 3uux = −c0ux + γuxxx . (38)
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Here, m = u − α2uxx is the momentum variable, and the constants α2

and γ/c0 are squares of length scales. At linear order in the asymptotic

expansion for shallow water waves in terms of the small parameters ε and

δ2, one finds α2 → 0, so that m → u in (37). In this case, the famous

Korteweg–de Vries (KdV) soliton equation is recovered for b = 2,

ut + 3uux = −c0ux + γuxxx . (38)

Any value of the parameter except b = −1 may be achieved in eqn (37) by

an appropriate near-identity (normal form) transformation of the solution

[DGH04]. The value b = −1 is disallowed in (37) because it cancels the

leading-order nonlinearity and, thus, breaks the asymptotic ordering.
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Here, m = u − α2uxx is the momentum variable, and the constants α2

and γ/c0 are squares of length scales. At linear order in the asymptotic

expansion for shallow water waves in terms of the small parameters ε and

δ2, one finds α2 → 0, so that m → u in (37). In this case, the famous

Korteweg–de Vries (KdV) soliton equation is recovered for b = 2,

ut + 3uux = −c0ux + γuxxx . (38)

Any value of the parameter except b = −1 may be achieved in eqn (37) by

an appropriate near-identity (normal form) transformation of the solution

[DGH04]. The value b = −1 is disallowed in (37) because it cancels the

leading-order nonlinearity and, thus, breaks the asymptotic ordering.

Because of the relation m = u− α2uxx, the b-equation (37) is non-local.

In other words, it is an integral-partial differential equation. In fact, after

writing eqn (37) equivalently as,

(1− α2∂2
x)(ut + uux) = − ∂x

(
b
2 u

2 + 3−b
2 α2u2

x

)
− c0ux + γuxxx . (39)
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The b-equation may be expressed in hydrodynamic form as

ut + uux = − px , (40)

with a ‘pressure’ p given by

p = G ∗
(
b
2 u

2 + 3−b
2 α2u2

x + c0u− γuxx
)
, (41)

in which the convolution kernel is the Green’s functionG(x, y) = 1
2αe−|x−y|/α

for the Helmholtz operator (1− α2∂2
x).

One sees the interplay between local and non-local linear dispersion in the

b-equation by linearizing eqn (39) around u = 0 to find its phase-velocity

relation,

ω

k
=
c0 + γ k2

1 + α 2k2
, (42)

obtained for waves with frequency ω and wave number k. For γ/c0 > 0,

short waves and long waves travel in the same direction. Long waves travel

faster than short ones (as required in shallow water) provided γ/c0 < α2.
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Then, the phase velocity lies in the interval ω/k ∈ (γ/α 2, c0]. The pa-
rameters c0 and γ represent linear wave dispersion, which modifies and
may eventually balance the tendency for nonlinear waves to steepen and
break. The parameter α, which introduces non-locality, also allows a bal-
ance leading to a stable wave shape, even in the absence of c0 and γ.

The nonlinear effects of the parameter b on the solutions of eqn (37) were
investigated in Holm and Staley [HS03], where b was treated as a bifurca-
tion parameter. In the limiting case when the linear dispersion coefficients
are absent, peakon solutions of eqn (37) are allowed theoretically for any
value of b. However, they were found numerically to be stable only for
b > 1. These coherent solutions are allowed, because the two nonlinear
terms in eqn (37) may balance each other, even in the absence of linear
dispersion. However, the instability of the peakons found numerically for
b < 1 indicates that the relative strengths of the two nonlinearities will
determine whether this balance can be maintained.

Exercise 8 A solution u of the b-equation (37) with c0 = 0 and γ = 0
vanishing at spatial infinity blows up in H1 if and only if its first-order
derivative blows up, that is, if wave breaking occurs.
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Lemma 2 (Steepening lemma for the b-equation with b > 1)
Suppose the initial profile of velocity u(0, x) has an inflection point at
x = x to the right of its maximum, and otherwise it decays to zero in
each direction. Assume that the velocity at the inflection point remains
finite. Then, the negative slope at the inflection point will become vertical
in finite time, provided b > 1.

Proof. Consider the evolution of the slope at the inflection point x = x(t).
Define s = ux(x(t), t). Then, the b-equation (37) with c0 = 0 and γ = 0
may be rewritten in hydrodynamic form as, cf. eqn (40),

ut + uux = − ∂xG ∗
(
b
2 u

2 + 3−b
2 α2u2

x

)
. (43)

The spatial derivative of this yields an equation for the evolution of s.
Namely, using uxx(x(t), t) = 0 leads to

ds

dt
+ s2 = − ∂2

x(G ∗ p) with p :=

(
b
2u

2(x(t), t) + 3−b
2 α2s2

)
= 1

α2(1− α2∂2
x)G ∗ p− 1

α2G ∗ p
= 1

α2p− 1
α2G ∗ p . (44)
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This calculation implies

ds

dt
= 1−b

2 s2 − 1
2α

∫ ∞
−∞

e−|x−y|/α
(
b
2u

2 + 3−b
2 α2u2

y

)
dy + b

2α2u
2(x(t), t)

≤ 1−b
2 s2 + b

2α2u
2(x(t), t) , (45)

where we have dropped the negative middle term in the last step. Then,

provided u2(x(t), t) remains finite, say less than a number M , we have

ds

dt
≤

(
1−b

2

)
s2 + bM

2α2 , (46)

which implies, for negative slope initially and b > 1, that the slope

remains negative and becomes vertical in finite time.

Remark 16 This proof of the steepening lemma for the b-equation identi-
fies b = 1 as a special value.

Remark 17 One might wonder whether the dispersionless CH equation is
the only shallow water b-equation that both possesses peakon solutions and
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is completely integrable as a Hamiltonian system. Mikhailov and Novikov

[MN02] showed that among the b-equations only the cases b = 2 and

b = 3 are completely integrable as Hamiltonian systems. The case b = 3

is the Degasperis–Processi equation, whose peakon solutions are studied

in [DHH03].

Remark 18 Hereafter, we specialize the b-equation (37) to the case b = 2.

If, in addition, c0 = 0 and γ = 0, then the b-equation specializes to EPDiff.

59



6.1 Hamiltonian dynamics of EPDiff peakons 6 SHALLOW-WATER BACKGROUND FOR PEAKONS

6.1 Hamiltonian dynamics of EPDiff peakons

Upon substituting the peakon solution expressions (34) for velocity u and

eqn (35) for momentum m into the EPDiff equation,

mt + umx + 2mux = 0 , with m = u− α2uxx , (47)

one finds Hamilton’s canonical equations for the dynamics of the discrete

set of peakon parameters pa(t) and qa(t). Namely,

q̇a(t) =
∂HN
∂pa

and ṗa(t) = −
∂HN
∂qa

, (48)

for a = 1, 2, . . . , N , with Hamiltonian given by [CH93],

HN = 1
2

N∑
a,b=1

pa pb e−|qa−qb|/α . (49)

The first canonical equation in eqn (48) implies that the peaks at the

positions x = qa(t) in the peakon-train solution (34) move with the flow of

the fluid velocity u at those positions, since u(qa(t), t) = q̇a(t). This means

60



6.1 Hamiltonian dynamics of EPDiff peakons 6 SHALLOW-WATER BACKGROUND FOR PEAKONS

the positions qa(t) are Lagrangian coordinates frozen into the flow of

EPDiff. Thus, the singular momentum solution ansatz (35) is the map from

Lagrangian coordinates to Eulerian coordinates (that is, the Lagrange-to-

Euler map) for the momentum.

Remark 19 The peakon wave train (35) forms a finite-dimensional invari-

ant manifold of solutions of the EPDiff equation. On this invariant man-

ifold of solutions for the partial differential equation (47), the dynamics

turns out to be canonically Hamiltonian as in eqn (48). A later lecture will

explain that the canonical Hamiltonian structure of the peakon solutions

arises because the solution ansatz (35) for momentum m is a momentum

map.
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6.2 Pulsons for other Green’s functions

The Hamiltonian HN in eqn (49) depends on G, the Green’s function for

the relation u = G ∗ m between velocity u and momentum m. For the

Helmholtz operator on the real line this Green’s function is given by eqn

(33) as G(x) = e−|x|/α/2α. However, the singular momentum solution

ansatz (35) is independent of this Green’s function. Thus, we may conclude

the following [FH01].

Proposition 1 The singular momentum solution ansatz

m(x, t) =
N∑
a=1

pa(t) δ(x− qa(t)) , (50)

for EPDiff,

mt + umx + 2mux = 0 , with u = G ∗m, (51)

provides a finite-dimensional invariant manifold of solutions governed by

canonical Hamiltonian dynamics, for any choice of the Green’s function G

relating velocity u and momentum m.
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Proof. The singular momentum solution ansatz (50) is independent of the

Green’s function G.

Remark 20 The pulson singular solutions (50) of the EPDiff equation

(51) form a finite-dimensional invariant symplectic manifold, on which the

EPDiff solution dynamics is governed by a canonical Hamiltonian system

for the conjugate pairs of variables (qa, pa) with a = 1, 2, . . . , N . Per-

haps surprisingly, these singular solutions will turn out to emerge from any

smooth confined initial distribution of momentum.
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Figure 12: When the Green’s function G has a triangular profile, a train of triangular
pulsons emerges from a Gaussian initial velocity distribution as it evolves under the EPDiff
equation (30). The upper panels show the collisions that occur as the faster triangular
pulsons overtake the slower ones as they cross and re-cross the periodic domain. The
upper left panel shows the progress of the pulsons by by showing offsets of the velocity
profile at equal time intervals. The upper right panel shows the pulson paths obtained by
plotting their elevation topography.

64



6.2 Pulsons for other Green’s functions 6 SHALLOW-WATER BACKGROUND FOR PEAKONS

The fluid velocity solutions corresponding to the singular momentum ansatz

(50) for eqn (51) are the pulsons. A pulson wave train is defined by the

sum over N velocity profiles determined by the Green’s function G, as

u(x, t) =
N∑
a=1

pa(t)G
(
x, qa(t)

)
. (52)

A solitary travelling wave solution for the pulson is given by

u(x, t) = cG(x, ct) = cG(x− ct) with G(0) = 1 , (53)

where one finds G(x, ct) = G(x− ct), provided the Green’s function G is

translation-invariant.

For EPDiff (51) with any choice of the Green’s function G, the singular

momentum solution ansatz (50) results in a finite-dimensional invariant

manifold of exact solutions. The 2N parameters pa(t) and qa(t) in these

pulson-train solutions of EPDiff satisfy Hamilton’s canonical equations

dqa

dt
=
∂HN
∂pa

and
dpa

dt
= −

∂HN
∂qa

, (54)
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with N -particle Hamiltonian,

HN =
1

2

N∑
a,b=1

pa pbG(qa, qb) . (55)

The canonical equations for the parameters in the pulson train define an

invariant manifold of singular momentum solutions and provide a phase-

space description of geodesic motion with respect to the cometric (inverse

metric) given by the Green’s function G. Mathematical analysis and nu-

merical results for the dynamics of these pulson solutions are given in

[FH01] whose results show how the results of collisions of pulsons (52)

depend upon the shape of their travelling wave profile. The effects of the

travelling-wave pulse shape

u(x− ct) = cG(x− ct)

on the multipulson collision dynamics are reflected in the Hamiltonian (55)

that governs this dynamics. For example, see Figure 12, in which the

pulsons are triangular.

Exercise 9 Verify the hydrodynamic form of the b-equation in eqn (39).
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Exercise 10 Verify that the b-equation (37) with c0 = 0 and γ = 0 admits
peakon-train solutions of the form (34) for any value of b.

Exercise 11 Verify that the b-equation (37) with c0 = 0 and γ = 0 satisfies

d

dt
‖u‖2

H1 = (b− 2)
∫
u3
x dx ,

for any value of b and for solutions that vanish sufficiently rapidly at spatial
infinity that no endpoint contributions arise upon integration by parts.

Exercise 12 Prove a steepening lemma for the b-equation (37) with c0 = 0
and γ = 0 that avoids the assumption that u2(x(t), t) remains finite. That
is, establish a necessary and sufficient condition depending only on the
initial data for blow-up to occur in finite time. How does this condition
depend on the value of b? Does this steepening lemma hold for every value
of b > 1?

Exercise 13 Are the equations of peakon dynamics for the b-equation (37)
with c0 = 0 and γ = 0 canonically Hamiltonian for every value of b? Hint:
try b = 3.
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7 Peakons and pulsons

7.1 Pulson–Pulson interactions

252 O.B. Fringer, D.D. Holm / Physica D 150 (2001) 237–263

Fig. 14. Rear-end collision dynamics fors = 2 pulsons. The faster space–time trajectory experiences a phase shift to the right while the slower
one experiences a phase shift to the left. The size of the interaction region is proportional to the sum of the pulse widths.

Fig. 15. Rear-end collision dynamics fors = 2 compactons. The faster space–time trajectory experiences a phase shift to the right while the
slower one experiences a phase shift to the left.

Fig. 16. Rear-end collision dynamics for Gaussons. The faster space–time trajectory experiences a phase shift to the right while the slower one
experiences a phase shift to the left. Because they are so narrow, Gaussons have the smallest phase shift of the four nonintegrable cases depicted
in this figure and Figs. 14,15 and 17.

Figure 13: This is the velocity profile for an overtaking collision of H2 pulsons [FH01].
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The solution of EPDiff in 1D

∂tm+ umx + 2uxm = 0 , (56)

with u = G ∗m for the momentum m = Qopu is given for the interaction

of only two pulsons by the sum of delta functions in eqn (50) with N = 2,

m(x, t) =
2∑
i=1

pi(t) δ(x− qi(t)) . (57)

The parameters satisfy the finite dimensional geodesic canonical Hamilto-

nian equations (48), in which the Hamiltonian for N = 2 is given by

HN=2(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) + p1p2G(q1 − q2) . (58)

Conservation laws and reduction to quadrature

Provided the Green’s function G is symmetric under spatial reflections,

G(−x) = G(x), the two-pulson Hamiltonian system conserves the total
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momentum

P = p1 + p2 . (59)

Conservation of P ensures integrability, by Liouville’s theorem, and reduces

the 2-pulson system to quadratures. To see this, we introduce sum and

difference variables as

P = p1 + p2 , Q = q1 + q2 , p = p1 − p2 , q = q1 − q2 . (60)

In these variables, the Hamiltonian (58) becomes

H(q, p, P ) =
1

4
(P 2 − p2)

(
1−G(q)

)
. (61)

Likewise, the 2-pulson equations of motion transform to sum and difference

variables as

dP

dt
= −2

∂H

∂Q
= 0 ,

dQ

dt
= 2

∂H

∂P
= P (1 +G(q)) ,

dp

dt
= −2

∂H

∂q
=

1

2
(p2 − P 2)G ′(q) ,

dq

dt
= 2

∂H

∂p
= − p(1−G(q)) .
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Eliminating p2 between the formula for H and the equation of motion for

q yields (
dq

dt

)2

= P 2
(

1−G(q)
)2
− 4H

(
1−G(q)

)
=: Z(G(q);P,H) ≥ 0 , (62)

which rearranges into the following quadrature,

dt =
dG(q)

G ′(q)
√
Z(G(q);P,H)

. (63)

For the peakon case, we have G(q) = eq so that G ′(q) = G(q) and the

quadrature (63) simplifies to an elementary integral. Having obtained q(t)

from the quadrature, the momentum difference p(t) is found from eqn (61)

via the algebraic expression

p2 = P 2 −
4H

1−G(q)
, (64)

in terms of q and the constants of motion P and H. Finally, the sum Q(t)

is found by a further quadrature.
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Upon writing the quantities H and P as

H = c1c2, P = c1 + c2,
1

2
c2

1 +
1

2
c2

2 =
1

2
P 2 −H , (65)

in terms of the asymptotic speeds of the pulsons, c1 and c2, we find the

relative momentum relation,

p2 = (c1 + c2)2 −
4c1c2

1−G(q)
. (66)

This equation has several implications for the qualitative properties of the

2-pulson collisions.

Definition 9 Overtaking, or rear-end, pulson collisions satisfy c1c2 > 0,

while head-on pulson collisions satisfy c1c2 < 0.

The pulson order q1 < q2 is preserved in an overtaking, or rear-end, colli-

sion. This follows, as
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Proposition 2 (Preservation of pulson order) For overtaking, or rear-end,
collisions, the 2-pulson dynamics preserves the sign condition

q = q1 − q2 < 0 .

Proof. Suppose the peaks were to overlap in an overtaking collision with
c1c2 > 0, thereby producing q = 0 during a collision. The condition
G(0) = 1 implies the second term in eqn (66) would diverge if this overlap
were to occur. However, such a divergence would contradict p2 ≥ 0.

Consequently, seen as a collision between two ‘particles’ with initial speeds
c1 and c2 that are initially well separated, the separation q(t) reaches a
non-zero distance of closest approach qmin in an overtaking, or rear-end,
collision that may be expressed in terms of the pulse shape, as follows.

Corollary 1 (Minimum separation distance)
The minimum separation distance reachable in two-pulson collisions with
c1c2 > 0 is given by,

1−G(qmin) =
4c1c2

(c1 + c2)2
. (67)
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Proof. Set p2 = 0 in eqn (66).

Proposition 3 (Head-on collisions admit q → 0)

The 2-pulson dynamics allows the overlap q → 0 in head-on collisions.

Proof. Because p2 ≥ 0, the overlap q → 0 implying g → 1 is only possible

in eqn (66) for c1c2 < 0. That is, for the head-on collisions.

Remark 21 (Divergence of head-on momentum)

Equation (66) implies that p2 → ∞ diverges when q → 0 in head-on

collisions. As we shall discuss, this signals the development of a vertical

slope in the velocity profile of the solution at the moment of collision.
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7.2 Pulson–anti-pulson interactions

Head-on pulson–anti-pulson collision

In a completely anti-symmetric head-on collision of a pulson and anti-

pulson, one has p1 = −p2 = p/2 and q1 = −q2 = q/2 (so that P = 0 and

Q = 0). In this case, the quadrature formula (63) reduces to

±(t− t0) =
1√
−4H

∫ q(t)

q(t0)

dq ′(
1−G(q ′)

)1/2
, (68)

and the second constant of motion in eqn (61) satisfies

−4H = p2
(

1−G(q)
)
≥ 0 . (69)

After the collision, the pulson and anti-pulson separate and travel apart in

opposite directions; so that asymptotically in time g(q)→ 0, p→ 2c, and
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H → −c2, where c (or −c) is the asymptotic speed (and amplitude) of

the pulson (or anti-pulson). Setting H = −c2 in eqn (69) gives a relation

for the pulson–anti-pulson (p, q) phase trajectories for any kernel,

p = ±
2c(

1−G(q)
)1/2

. (70)

Notice that p diverges (and switches branches of the square root) when

q → 0+, because G(0) = 1. The convention of switching branches of the

square root allows one to keep q > 0 throughout, so the particles retain

their order. That is, the particles ‘bounce’ elastically at the moment when

q → 0+ in the perfectly anti-symmetric head-on collision.
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Remark 22 (Preservation of particle identity in collisions)

The relative separation distance q(t) in pulson–anti-pulson collisions is de-

termined by following a phase point along a level surface of the Hamiltonian

H in the phase space with coordinates (q, p). Because H is quadratic, the

relative momentum p has two branches on such a level surface, as indi-

cated by the ± sign in eqn (70). At the pulson–anti-pulson collision point,

both q → 0+ and either 1/p → 0+ or p → 0+, so following a phase

point through a collision requires that one must choose a convention for

which branch of the level surface is taken after the collision. Taking the

convention that p changes sign (corresponding to a bounce), but q does

not change sign (so the particles keep their identity) is convenient, be-

cause it allows the phase points to be followed more easily through multiple

collisions. This choice is also consistent with the pulson–pulson and anti-

pulson–anti-pulson collisions. In these other rear-end collisions, as implied

by eqn (66), the separation distance always remains positive and again the

particles retain their identity.
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Figure 14: This is the velocity profile (71) for the peakon-antipeakon head-on collision
as a function of separation between the peaks [FH01].
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Theorem 2 (Pulson–anti-pulson exact solution)

The exact analytical solution for the pulson–anti-pulson collision for any

symmetric G may be written as a function of position x and the separation

between the pulses q for any pulse shape or kernel G(x) as

u(x, q) =
c(

1−G(q)
)1/2

[
G(x+ q/2)−G(x− q/2)

]
, (71)

where c is the pulson speed at sufficiently large separation and the dynamics

of the separation q(t) is given by the quadrature (68) with
√
−4H = 2c.

Proof. The solution for the velocity u(x, t) in the head-on pulson–anti-

pulson collision may be expressed in this notation as

u(x, t) =
p

2
G(x+ q/2)−

p

2
G(x− q/2) . (72)

In using eqn (70) to eliminate p this solution becomes eqn (71).
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Exercise 14 According to eqn (68), how much time is required for the

head-on pulson–anti-pulson collision, when G(q) = e−q
2/2 is a Gaussian?

Exercise 15 For the case that G(x) = e−|x|, which is Green’s function for

the Helmholtz operator in 1D with α = 1, show that solution (72) for the

peakon–anti-peakon collision yields

q = − log sech2(ct) , p =
±2c

tanh(ct)
, (73)

so the peakon–anti-peakon collision occurs at time t = 0 and eqn (72)

results in

m(x, t) = u− α2uxx

=
2c

tanh(ct)

[
δ

(
x−

1

2
q(t)

)
− δ

(
x+

1

2
q(t)

)]
. (74)

Discuss the behaviour of this solution. What happens to the slope and

amplitude of the peakon velocity just at the moment of impact?
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Figure 15: Velocity profile (71) for the head-on collision of the triangular peakon–anti-
peakon pair as a function of separation between the peaks [FH01].
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Lecture #2, Integrability of EPDiff in 1D

This lecture explains the noncanonical Hamiltonian properties of the CH

equation (75) in one spatial dimension. In fact, the CH equation has two

compatible Hamiltonian structures, so it is bi-Hamiltonian. In this situa-

tion, Magri’s lemmas for bi-Hamiltonian PDE in 1D imply systematically

that CH arises as a different compatibility condition for an isospectral

eigenvalue problem and a linear evolution equation for the correspond-

ing eigenfunctions in the case when G(x) = e−|x|/α. The properties

of being bi-Hamiltonian and possessing an associated isospectral prob-

lem are ingredients for proving the one-dimensional CH equation (75) is

completely integrable as a Hamiltonian system and is solvable by the

inverse scattering transform (IST) method.
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In the previous lecture, we discussed the CH equation for unidirectional

shallow-water waves derived in [CH93], as a special case of the b-equation

(37) with b = 2,

mt + umx + 2mux = −c0ux + γuxxx , m = u− α2uxx . (75)

This partial differential equation (PDE) describes shallow-water dynamics

at quadratic order in the asymptotic expansion for unidirectional shallow-

water waves on a free surface under gravity. The previous lecture discussed

its elastic particle-collision solution properties in the dispersionless case for

which the linear terms on the right side of eqn (75) are absent. These

elastic-collision solution properties hold for any Green’s function G(x) in

the convolution relation u = G ∗ m between velocity u and momentum

m. For the CH equation G(x) = e−|x|/α is the Green’s function for

the 1D Helmholtz operator on the real line with homogeneous boundary

conditions.

83



8 THE CH EQUATION IS BI-HAMILTONIAN

8 The CH equation is bi-Hamiltonian

The CH equation is bi-Hamiltonian. This means that eqn (75) may be

written in two compatible Hamiltonian forms, namely as

mt = −B2
δH1

δm
= −B1

δH2

δm
, (76)

where B1 and B2 are Poisson operators. For the CH equation, the pairs

of Hamiltonians and Poisson operators are given by

H1 =
1

2

∫
(u 2 + α 2u 2

x) dx ,

B2 = ∂xm+m∂x + c0∂x + γ ∂3
x , (77)

H2 =
1

2

∫
u 3 + α 2uu 2

x + c0u
2 − γ u 2

x dx ,

B1 = ∂x − α 2∂3
x . (78)

These bi-Hamiltonian forms restrict properly to those for KdV when α 2 →
0, and to those for EPDiff when c0, γ → 0. Compatibility of B1 and B2

is assured, because (∂xm + m∂x), ∂x and ∂3
x are all mutually compatible
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Hamiltonian operators. That is, any linear combination of these operators

defines a Poisson bracket,

{f, h}(m) = −
∫
δf

δm
(c1B1 + c2B2)

δh

δm
dx , (79)

as a bilinear skew-symmetric operation that satisfies the Jacobi identity.

(In general, the sum of the Poisson brackets would fail to satisfy the Jacobi

identity.)

Moreover, no further deformations of these Hamiltonian operators involving

higher-order partial derivatives would be compatible with B2, as shown in

[Olv00]. This fact was already known in the literature for KdV, see [Fuc96].
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8.1 Magri’s lemmas

The property of compatibility of the two Hamiltonian operators for a bi-
Hamiltonian equation enables the construction under certain conditions of
an infinite hierarchy of Poisson-commuting Hamiltonians. The property of
compatibility was used by Magri [Mag78] in proving the following important
pair of lemmas (see also [Olv00] for a clear discussion of Magri’s lemmas):

Lemma 3 (Magri 1978) If B1 and B2 are compatible Hamiltonian op-

erators, with B1 non-degenerate, and if

B2
δH1

δm
= B1

δH2

δm
and B2

δH2

δm
= B1K , (80)

for Hamiltonians H1, H2, and some function K, then there exists a third

Hamiltonian functional H such that K = δH/δm.

To prove the existence of an infinite hierarchy of Hamiltonians, Hn, n =
1, 2, . . . , related to the two compatible Hamiltonian operators B1, B2, we
need to check that the following two conditions hold:
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(i) There exists an infinite sequence of functions K1, K2, . . . satisfying

B2Kn = B1Kn+1 ; (81)

(ii) There exist two functionals H1 and H2 such that

K1 =
δH1

δm
, K2 =

δH2

δm
. (82)

It then follows from Lemma 3 that there exist functionals Hn such that

Kn =
δHn

δm
, for all n ≥ 1 . (83)

Lemma 4 (Magri 1978) Let { · , · }1 and { · , · }2 denote the Poisson

brackets defined, respectively, by B1 and B2, which are assumed to

be compatible Hamiltonian operators. Let H1, H2, . . . be an infinite

sequence of Hamiltonian functionals constructed from eqns (81) and
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(83). Then, these Hamiltonian functionals mutually commute under

both Poisson brackets:

{Hm, Hn }1 = {Hm, Hn }2 = 0 , for all m,n ≥ 1 . (84)

Definition 10 A set of Hamiltonians that Poisson-commute among them-

selves is said to be in involution.

Remark 23 The condition for a canonical Hamiltonian system with N de-

grees of freedom to be completely integrable is that it possess N constants

of motion in involution. The bi-Hamiltonian property is important because

it produces the corresponding condition for an infinite-dimensional system.

The infinite-dimensional case introduces additional questions, such as the

completeness of the infinite set of independent constants of motion in

involution. However, such questions are beyond our present scope.
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8.2 Applying Magri’s lemmas

The bi-Hamiltonian property of eqn (75) allows one to construct an in-

finite number of Poisson-commuting conservation laws for it by apply-

ing Magri’s lemmas. According to [Mag78], these conservation laws may

be constructed for non-degenerate B1 by defining the transpose operator

RT = B−1
1 B2 that leads from the variational derivative of one conservation

law to the next,

δHn

δm
= RT

δHn−1

δm
, n = −1, 0, 1, 2, . . . . (85)

The operator RT = B−1
1 B2 recursively takes the variational derivative of

H−1 to that of H0, to that of H1, then to that of H2, etc. The next steps

are not so easy for the integrable CH hierarchy, because each application

of the recursion operator introduces an additional convolution integral into

the sequence. Correspondingly, the recursion operator R = B2B
−1
1 leads

to a hierarchy of commuting flows, defined by Kn+1 = RKn, for n =
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0, 1, 2, . . . ,

m
(n+1)
t = Kn+1[m] = −B1

δHn

δm

= −B2
δHn−1

δm
= B2B

−1
1 Kn[m] . (86)

The first three flows in the ‘positive hierarchy’ when c0, γ → 0 are

m
(1)
t = 0 , m

(2)
t = −mx , m

(3)
t = − (m∂ + ∂m)u , (87)

the third being EPDiff. The next flow is too complicated to be usefully

written here. However, by Magri’s construction, all of these flows commute

with the other flows in the hierarchy, so they each conserve Hn for n =

0, 1, 2, . . . .

The recursion operator can also be continued for negative values of n. The

conservation laws generated in this way do not introduce convolutions, but

care must be taken to ensure the conserved densities are integrable. All the

Hamiltonian densities in the negative hierarchy are expressible in terms of
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m only and do not involve u. Thus, for instance, the second Hamiltonian

in the negative hierarchy of EPDiff is given by

mt = B1
δH−1

δm
= B2

δH−2

δm
, (88)

which gives

H−2 =
1

2

∫ ∞
−∞

[
α2

4

m2
x

m5/2
−

2
√
m

]
. (89)

The flow defined by eqn (88) is

mt = −(∂ − α2∂3)

(
1

2
√
m

)
. (90)

For m = u− α2uxx, this flow is similar to the Dym equation,

uxxt = ∂3

(
1

2
√
uxx

)
, (91)

which is also a completely integrable soliton equation [AS06].
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9 The CH equation is isospectral

The squared-eigenfunction trick. The isospectral eigenvalue problem as-

sociated with eqn (75) may be found by using the recursion relation of the

bi-Hamiltonian structure, following a standard technique due to Gelfand

and Dorfman [GD79]. Let us introduce a spectral parameter λ and multi-

ply by λn the nth step of the recursion relation (86), then taking the sum

yields

B1

∞∑
n=0

λn
δHn

δm
= λB2

∞∑
n=0

λ(n−1)δHn−1

δm
, (92)

or, by introducing the squared-eigenfunction ψ2

ψ2(x, t;λ) :=
∞∑

n=−1

λn
δHn

δm
, (93)

one finds, formally,

B1ψ
2(x, t;λ) = λB2ψ

2(x, t;λ) . (94)
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This is a third-order eigenvalue problem for the squared-eigenfunction ψ2,

which turns out to be equivalent to a second-order Sturm–Liouville prob-

lem for ψ.

Proposition 4 If ψ satisfies

λ

(
1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ , (95)

then ψ2 is a solution of eqn (94).

Proof. This is is straightforward computation.

Now, assuming that λ will be independent of time, we seek, in analogy

with the KdV equation, an evolution equation for ψ of the form,

ψt = aψx + bψ , (96)

where a and b are functions of u and its derivatives. These functions are

determined from the requirement that the compatibility condition ψxxt =
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ψtxx between eqns (95) and (96) implies eqn (75). Cross-differentiation

shows

b = −
1

2
ax , and a = − (λ+ u) . (97)

Consequently,

ψt = − (λ+ u)ψx +
1

2
uxψ , (98)

is the desired evolution equation for the eigenfunction ψ.

94



9 THE CH EQUATION IS ISOSPECTRAL

Summary of the isospectral property of the CH eqn

The Gelfand–Dorfman theory [GD79] determines the isospectral problem
for integrable equations via the squared-eigenfunction approach.
Its bi-Hamiltonian property implies that the nonlinear shallow-water wave
CH eqn (75) arises as a compatibility condition for two linear equations.

These are the isospectral eigenvalue problem,

λ

(
1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ , (99)

and the evolution equation for the eigenfunction ψ,

ψt = −(u+ λ)ψx +
1

2
uxψ . (100)

Compatibility of these linear equations (ψxxt = ψtxx) together with

isospectrality

dλ/dt = 0 ,

imply eqn (75).
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Remark 24 The isospectral eigenvalue problem (99) for the nonlinear CH

water-wave equation (75) restricts to the isospectral problem for KdV

(namely, the Schrödinger equation) when α 2 → 0. The evolution equation

(100) for the isospectral eigenfunctions in the cases of KdV and CH are

identical. The isospectral eigenvalue problem and the evolution equation

for its eigenfunctions are two linear equations whose compatibility implies

a nonlinear equation for the unknowns in the KdV and CH equations. This

formulation for the KdV equation led to the famous method of the inverse

scattering transform (IST) for the solution of its initial-value problem,

reviewed, e.g., in [AS06]. The CH equation also admits the IST solution

approach, but for a different isospectral eigenvalue problem that limits to

the Schrödinger equation when α 2 → 0. The isospectral eigenvalue prob-

lem (99) for CH arises in the study of the fundamental oscillations of a

non-uniform string under tension.
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EPDiff is the dispersionless case of CH

In the dispersionless case c0 = 0 = γ, the shallow-water equation (75)

becomes the 1D geodesic equation EPDiff(H1)

mt + umx + 2mux = 0 , m = u− α2uxx . (101)

The solitary travelling-wave solution of 1D EPDiff (101) in this dispersion-

less case is the peakon,

u(x, t) = cG(x− ct) =
c

2α
e−|x−ct|/α .

The EPDiff equation (30) may also be written as a conservation law for

momentum,

∂tm = −∂x
(
um+

1

2
u2 −

α2

2
u2
x

)
. (102)

Its isospectral problem forms the basis for completely integrating the EPDiff

equation as a Hamiltonian system and, thus, for finding its soliton solutions.

Remarkably, the isospectral problem (99) in the dispersionless case c0 =
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0 = Γ has a purely discrete spectrum on the real line and the N -soliton

solutions for this equation may be expressed as a peakon wave train,

u(x, t) =
N∑
i=1

pi(t)e−|x−qi(t)|/α . (103)

As before, pi(t) and qi(t) satisfy the finite-dimensional geodesic motion

equations obtained as Hamilton’s canonical equations

q̇i =
∂HN
∂pi

and ṗi = −
∂HN
∂qi

, (104)

where the Hamiltonian is given by,

HN =
1

2

N∑
i,j=1

pi pj e−|qi−qj|/α . (105)

Thus, we have proved the following.

Theorem 3 CH peakons are an integrable subcase of EPDiff pulsons in

one dimension for the choice of the H1 norm.
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Remark 25 The discrete process of peakon creation via the steepening

lemma 5.1 is consistent with the discreteness of the isospectrum for the

eigenvalue problem (99) in the dispersionless case, when c0 = 0 = γ.

These discrete eigenvalues correspond in turn to the asymptotic speeds of

the peakons. The discreteness of the isospectrum means that only peakons

will emerge in the initial-value problem for EPDiff(H1) in 1D.
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Constants of motion for integrable N-peakon dynamics

One may verify the integrability of the N -peakon dynamics by substituting

the N -peakon solution (103) (which produces the sum of delta functions

(35) for the momentum m) into the isospectral problem (99). This sub-

stitution reduces (99) to an N ×N matrix eigenvalue problem.

In fact, the canonical equations (104) for the peakon Hamiltonian (105)

may be written directly in Lax matrix form,

dL

dt
= [L,A] ⇐⇒ L(t) = U(t)L(0)U†(t) , (106)

with A = U̇U†(t) and UU† = Id. Explicitly, L and A are N ×N matrices

with entries

Ljk =
√
pjpk φ(qi − qj) , Ajk = −2

√
pjpk φ

′(qi − qj) . (107)

Here, φ′(x) denotes derivative with respect to the argument of the func-

tion φ, given by φ(x) = e−|x|/2α = 2αG(x/2). The Lax matrix L in
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eqn (106) evolves by time-dependent unitary transformations, which leave

its spectrum invariant. Isospectrality then implies that the traces trLn,

n = 1, 2, . . . , N of the powers of the matrix L (or, equivalently, its N eigen-

values) yield N constants of the motion. These turn out to be function-

ally independent, non-trivial and in involution under the canonical Poisson

bracket. Hence, the canonically Hamiltonian N -peakon dynamics (104) is

completely integrable in the finite-dimensional (Liouville) sense.

Exercise 16 Verify that the compatibility condition (equality of cross deriva-

tives ψxxt = ψtxx) obtained from the eigenvalue equation (99) and the

evolution equation (100) do indeed yield the CH shallow-water wave equa-

tion (75) when the eigenvalue λ is constant.

Exercise 17 Show that the peakon Hamiltonian HN in (105) may be ex-

pressed as a function of the invariants of the matrix L, as

HN = −trL2 + 2(trL)2 . (108)

Show that evenness of HN implies
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1. The N coordinates qi, i = 1, 2, . . . , N keep their initial ordering.

2. The N conjugate momenta pi, i = 1, 2, . . . , N keep their initial signs.

This means that no difficulties arise, either due to the non-analyticity of

φ(x), or the sign in the square roots in the Lax matrices L and A.

Exercise 18 (Hunter–Saxton equation) Retrace the progress of this lec-

ture for the EPDiff equation

mt + umx + 2mux = 0 , with m = −uxx . (109)

This integrable Hamiltonian partial differential equation arises in the theory

of liquid crystals. Its peakon solutions are the compactly supported trian-

gles in Figure 12 and Figure 15. It may also be regarded as the α → ∞
limit of the CH equation. For more results and discussion of this equation,

see [HZ94].
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EPDiff in n dimensions

This lecture discusses the n-dimensional generalization of the one-

dimensional singular solutions of the EP equation studied in the previous

lecture. Much of the one-dimensional structure persists in higher dimen-

sions. For example, the parameters defining the singular solutions of

EPDiff in n dimensions still obey canonical Hamiltonian equations. This

is understood by identifying the singular solution ansatz as a cotangent-

lift momentum map for the left action of the diffeomorphisms on the

lower-dimensional support set of the singular solutions.
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Figure 16: A single collision is shown involving reconnection as the faster peakon
segment initially moving Southeast along the diagonal expands, curves and obliquely
overtakes the slower peakon segment initially moving rightward (East). This reconnection
illustrates one of the collision rules for the strongly two-dimensional EPDiff flow.
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Figure 17: The convergence of two peakon segments moving with reflection symmetry
generates considerable acceleration along the midline, which continues to build up after
the initial collision.
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Figure 18: The head-on collision of two offset peakon segments generates considerable
complexity. Some of this complexity is due to the process of annihilation and recreation
that occurs in the 1D antisymmetric head-on collisions of a peakon with its reflection,
the antipeakon, as shown in Figure 12.3. Other aspects of it involve flow along the crests
of the peakon segments as they stretch.
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Figure 19: The overtaking collisions of these rotating peakon segments with five-
fold symmetry produces many reconnections (mergers), until eventually one peakon ring
surrounds five curved peakon segments. If the evolution were allowed to proceed further,
reconnections would tend to produce additional concentric peakon rings.
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Figure 20: A circular peakon ring initially undergoes uniform rightward translational
motion along the x axis. The right outer side of the ring produces diverging peakon
curves, which slow as they propagate outward. The left inner side of the ring, however,
produces converging peakon segments, which accelerate as they converge. They collide
along the midline, then develop into divergent peakon curves still moving rightward that
overtake the previous ones and collide with them from behind. These overtaking collisions
impart momentum, but they apparently do not produce reconnections.
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10 EPDiff solutions in higher dimensions

10.1 n-dimensional EPDiff equation

Eulerian geodesic motion of an ideal continuous fluid in n dimensions is

generated as an EP equation via Hamilton’s principle, when the Lagrangian

is given by the kinetic energy. The kinetic energy defines a norm ‖u‖2 for

the Eulerian fluid velocity, u(x, t) : Rn×R1 → Rn. As mentioned earlier,

the choice of the kinetic energy as a positive functional of fluid velocity u

is a modelling step that depends upon the physics of the problem being

studied. Following our earlier procedure, as in eqns (11) and (14), we shall

choose the Lagrangian,

‖u‖2 =
∫

u ·Qopu dnx =
∫

u ·m dnx , (110)
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so that the positive-definite, symmetric, operator Qop defines the norm

‖u‖, under integration by parts for appropriate boundary conditions and

the EPDiff equation for Eulerian geodesic motion of a fluid emerges,

d

dt

δ`

δu
+ ad∗u

δ`

δu
= 0 , with `[u] =

1

2
‖u‖2 . (111)

Legendre transforming to the Hamiltonian side

The corresponding Legendre transform yields the following invertible rela-

tions between momentum and velocity,

m = Qopu and u = G ∗m , (112)

where G is the Green’s function for the operator Qop, assuming appropriate

boundary conditions (on u) that allow inversion of the operator Qop to

determine u from m.
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The associated Hamiltonian is,

h[m] = 〈m , u〉 −
1

2
‖u‖2 =

1

2

∫
m ·G ∗m dnx =:

1

2
‖m‖2 , (113)

which also defines a norm ‖m‖ via a convolution kernel G that is symmetric

and positive, when the Lagrangian `[u] is a norm. As expected, the norm

‖m‖ given by the Hamiltonian h[m] specifies the velocity u in terms of its

Legendre-dual momentum m by the variational operation,

u =
δh

δm
= G ∗m ≡

∫
G(x− y) m(y) dny . (114)

We shall choose the kernelG(x−y) to be translation-invariant (so Noether’s

theorem implies that total momentum M =
∫
m dnx is conserved) and

symmetric under spatial reflections (so that u and m have the same parity

under spatial reflections).

After the Legendre transformation (113), the EPDiff equation (14) appears

in its equivalent Lie–Poisson Hamiltonian form,

∂

∂t
m = {m, h} = − ad∗δh/δmm . (115)
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Here the operation {· , · } denotes the Lie–Poisson bracket dual to the

(right) action of vector fields amongst themselves by vector-field commu-

tation. That is,

{f , h } = −
〈
m ,

[
δf

δm
,
δh

δm

]〉
. (116)

For more details and additional background concerning the relation of

classical EP theory to Lie–Poisson Hamiltonian equations, see [MR02,

HMR98]. In a moment we will also consider the momentum maps for

EPDiff.
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10.2 Pulsons in n dimensions

The momentum for the one-dimensional pulson solutions (35) on the real

line is supported at points via the Dirac delta measures in its solution

ansatz,

m(x, t) =
N∑
i=1

pi(t) δ
(
x− qi(t)

)
, m ∈ R . (117)

We shall develop n-dimensional analogues of these one-dimensional pulson

solutions for the Euler–Poincaré equation (23) by generalizing this solution

ansatz to allow measure-valued n-dimensional vector solutions m ∈ Rn for

which the Euler–Poincaré momentum is supported on codimension-k sub-

spaces Rn−k with integer k ∈ [1, n]. For example, one may consider the

two-dimensional vector momentum m ∈ R2 in the plane that is supported

on one-dimensional curves (momentum fronts). Likewise, in three dimen-

sions, one could consider two-dimensional momentum surfaces (sheets).
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The corresponding vector momentum ansatz that we shall use is the fol-

lowing, cf. the pulsons (117),

m(x, t) =
N∑
i=1

∫
Pi(s, t) δ

(
x−Q i(s, t)

)
ds , m ∈ Rn . (118)

Here, Pi,Qi ∈ Rn for i = 1, 2, . . . , N . For example, when n − k = 1,

so that s ∈ R is one-dimensional, the delta function in solution (118)

supports an evolving family of vector-valued curves, called momentum

filaments. (For simplicity of notation, we suppress the implied subscript i

in the arclength s for each Pi and Qi.) The Legendre-dual relations (112)

imply that the velocity corresponding to the momentum filament ansatz

(118) is,

u(x, t) = G ∗m =
N∑
j=1

∫
Pj(s

′, t)G
(
x−Q j(s

′, t)
)

ds′ . (119)

Just as for the 1D case of the pulsons, we shall show that substitution of

the n-D solution ansatz (118) and (119) into the EPDiff equation (20)

produces canonical geodesic Hamiltonian equations for the n-dimensional

vector parameters Qi(s, t) and Pi(s, t), i = 1, 2, . . . , N .
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Canonical Hamiltonian dynamics of momentum filaments

For definiteness in what follows, we shall consider the example of momen-

tum filaments m ∈ Rn supported on one-dimensional space curves in Rn,

so s ∈ R is the arclength parameter of one of these curves. This solution

ansatz is reminiscent of the Biot–Savart Law for vortex filaments, although

the flow is not incompressible. The dynamics of momentum surfaces, for

s ∈ Rk with k < n, follow a similar analysis.

Substituting the momentum filament ansatz (118) for s ∈ R and its corre-

sponding velocity (119) into the Euler–Poincaré equation (20), then inte-

grating against a smooth test function φ(x) implies the following canonical
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equations (denoting explicit summation on i, j ∈ 1, 2, . . . N),

∂

∂t
Qi(s, t) =

N∑
j=1

∫
P′j G(Qi −Q′j)ds′ =

δHN
δPi

, (120)

∂

∂t
Pi(s, t) = −

N∑
j=1

∫ (
Pi ·P′j

) ∂

∂Qi
G(Qi −Q′j) ds′

= −
δHN
δQi

, (121)

where Pi = Pi(s, t), P′j := Pj(s
′, t) and

G(Qi −Q′j) := G(Qi(s, t)−Qj(s
′, t)) . (122)

The dot product Pi · P′j denotes the inner, or scalar, product of the two

vectors Pi and P′j in T ∗Rn. Thus, the solution ansatz (118) yields a closed

set of integro-partial-differential equations (IPDEs) given by (120) and

(121) for the vector parameters Qi(s, t) and Pi(s, t) with i = 1, 2 . . . N .

These equations are generated canonically by the Hamiltonian function
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HN : (T ∗Rn)N → R given by

HN [P,Q] =
1

2

∫∫ N∑
i , j=1

(
Pi ·P′j

)
G
(
Qi −Q′j

)
ds ds′ =:

1

2
‖P‖2 . (123)

This Hamiltonian arises by inserting the momentum ansatz (118) into the

Hamiltonian (113) obtained from the Legendre transformation of the La-

grangian corresponding to the kinetic energy norm of the fluid velocity.

Thus, the evolutionary IPDE system (120) and (121) represents canon-

ically Hamiltonian geodesic motion on the space of curves in Rn with

respect to the cometric given on these curves in eqn (123). The Hamil-

tonian HN = 1
2‖P‖

2 in eqn (123) defines the norm ‖P‖ in terms of this

cometric that combines convolution using the Green’s function G and sum

over filaments with the scalar product of momentum vectors in Rn.

Remark 26 Note that the coordinate s is a Lagrangian label moving with

the fluid, since

∂

∂t
Qi(s, t) = u(Qi(s, t), t) .
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Exercise 19 Explain the meaning of the Hamiltonian equation (115) with

Lie–Poisson bracket (116). Discuss the interpretation of {m, h} when m

is a vector.

Hint: write m(x, t) as a spatial integral by inserting a delta function,

m(x, t) =
∫
R3

m(y, t) δ(x− y) d3y .

Use this representation to show that the Lie–Poisson bracket (116) yields

dynamics in the form of eqn (115),

{m, h} = −
〈

ad∗δh/δmm , δ(x− y)
〉

= − ad∗δh/δmm .
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11 Singular solution momentum map JSing

The momentum filament ansatz (118) reduces the solution of the geodesic

EP PDE (20) in n + 1 dimensions to the system of eqns (120) and (121)

of 2N canonical evolutionary IPDEs. One can summarize the mechanism

by which this process occurs, by saying that the map that implements the

canonical (Q,P) variables in terms of singular solutions is a (cotangent

bundle) momentum map. Such momentum maps are Poisson maps; so

the canonical Hamiltonian nature of the dynamical equations for (Q,P)

fits into a general theory that also provides a framework for suggesting

other avenues of investigation.

Theorem 4 The momentum ansatz (118) for measure-valued solutions of

the EPDiff equation (20), defines an equivariant momentum map

JSing : T ∗ Emb(S,Rn)→ X(Rn)∗ ,

called the singular solution momentum map in [HM04].
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Remark 27 We shall explain the notation used in the theorem’s statement

in the course of its proof. By ‘defines’ one means that the momentum

solution ansatz (118) expressing m (a vector function of spatial position

x) in terms of Q,P (which are functions of s) can be regarded as a map

from the space of (Q(s),P(s)) to the space of m’s. This will turn out

to be the Lagrange-to-Euler map for the fluid description of the singular

solutions.

Proof. For simplicity and without loss of generality, let us take N = 1

and so suppress the index a. That is, we shall take the case of an isolated

singular solution. As the proof will show, this is not a real restriction. To set

the notation, fix a k-dimensional manifold S with a given volume element

and whose points are denoted s ∈ S. Let Emb(S,Rn) denote the set of

smooth embeddings Q : S → Rn. (If the EPDiff equations are taken on a

manifold M , replace Rn with M .) Under appropriate technical conditions,

which we shall just treat formally here, Emb(S,Rn) is a smooth manifold.

(See, for example, [EM70] and [MH94] for a discussion and references.)
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The tangent space TQ Emb(S,Rn) to Emb(S,Rn) at point Q ∈ Emb(S,Rn)

is given by the space of material velocity fields, namely the linear space

of maps V : S → Rn that are vector fields over the map Q. The dual

space to this space will be identified with the space of one-form densities

over Q, which we shall regard as maps P : S → (Rn)∗. In summary, the

cotangent bundle T ∗ Emb(S,Rn) is identified with the space of pairs of

maps (Q,P).

These give us the domain space for the singular solution momentum map.

Now we consider the action of the symmetry group. Consider the group

G = Diff of diffeomorphisms of the space Rn in which the EPDiff equations

are operating, concretely in our case this is Rn. Let it act on Rn by

composition on the left. Namely, for η ∈ Diff(Rn), we let

η ·Q = η ◦Q . (124)

Now lift this action to the cotangent bundle T ∗ Emb(S,Rn) in the stan-

dard way. One may consult, for instance, [MR02] for this cotangent-lift
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construction. However, it is also given explicitly by the variational con-

struction. This lifted action is a symplectic (and hence Poisson) action

and has an equivariant momentum map. This cotangent-lift momentum

map for the left action (124) is precisely given by the ansatz (118).

To see this, one only needs to recall and then apply the general formula

for the momentum map associated with an action of a general Lie group

G on a configuration manifold Q and cotangent lifted to T ∗Q.

First let us recall the general formula. Namely, the momentum map is

defined by J : T ∗Q→ g∗ (g∗ denotes the dual of the Lie algebra g of G)

J(αq) · ξ =
〈
αq, ξQ(q)

〉
, (125)

where αq ∈ T ∗qQ and ξ ∈ g, where ξQ is the infinitesimal generator of

the action of G on Q associated to the Lie algebra element ξ, and where
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αq, ξQ(q)

〉
is the natural pairing of an element of T ∗qQ with an element

of TqQ.

Now we apply formula (125) to the special case in which the group G

is the diffeomorphism group Diff(Rn), the manifold Q is Emb(S,Rn) and

where the action of the group on Emb(S,Rn) is given by eqn (124). The

Lie algebra of G = Diff is the space g = X of vector fields. Hence, its dual

is naturally regarded as the space of one-form densities. The momentum

map is thus a map J : T ∗ Emb(S,Rn)→ X∗.

With J given by (125), we only need to work out this formula. First, we

shall work out the infinitesimal generators. Let X ∈ X be a Lie algebra

element. By differentiating the action (124) with respect to η in the

direction of X at the identity element we find the infinitesimal generator

XEmb(S,Rn)(Q) = X ◦Q .
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Thus, on taking αq to be the cotangent vector (Q,P), eqn (125) gives

〈J(Q,P), X〉 = 〈(Q,P), X ◦Q〉

=
∫
S
Pi(s)Xi(Q(s))dks .

On the other hand, note that the right-hand side of eqn (118), when

paired with the Lie algebra element X is〈∫
S

P(s) δ (x−Q(s)) dks,X
〉

=
∫
Rn

∫
S

(
Pi(s) δ (x−Q(s)) dks

)
Xi(x)dnx (126)

=
∫
S
Pi(s)Xi(Q(s)dks .

This shows that the expression given by eqn (118) is equal to J and so

the result is proved.

Remark 28 An important element left out in this proof so far is that it

does not make clear that the momentum map is equivariant, a condition
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needed for the momentum map to be Poisson. The proof took care of

this property automatically since momentum maps for cotangent-lifted

actions are always equivariant and hence are Poisson.

The proof has shown the following.

Corollary 2 The singular solution momentum map defined by the singular

solution ansatz (118), namely,

JSing : T ∗ Emb(S,Rn)→ X(Rn)∗ (127)

is a Poisson map from the canonical Poisson structure on the cotangent

space T ∗ Emb(S,Rn) to the Lie–Poisson structure on X(Rn)∗.

This is the fundamental property of the singular solution momentum map.

Some of its more sophisticated properties are outlined in [HM04].
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Importance of equivariance Equivariance of a momentum map is impor-

tant, because Poisson brackets among the components of an equivariant

momentum map close among themselves and satisfy the Jacobi identity.

That is, the following theorem holds.

Theorem 5 Equivariant momentum maps are Poisson.

Proof. A momentum map J : P → g∗ is equivariant, if

J ◦ Φg(t) = Ad∗g(t)−1 ◦ J ,

for any curve g(t) ∈ G. This means the following diagram commutes:

-P P
Φg(t)

?

J

-

Ad∗
g(t)−1

?

g∗ g∗
J
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The time derivative of the equivariance relation leads to the infinitesimal

equivariance relation,

{〈J , ξ〉 , 〈J , η〉} =
〈
J , [ξ, η]

〉
,

where ξ, η ∈ g and { · , · } denotes the Poisson bracket on the manifold P .

This in turn implies that the momentum map preserves Poisson brackets

in the sense that,

{F1 ◦ J , F2 ◦ J} = {F1 , F2}LP ◦ J ,

for all F1, F2 ∈ F(g∗), where {F1 , F2}LP denotes the Lie-Poisson bracket

for the appropriate left or right action of g on P . That is, equivariance

implies infinitesimal equivariance, which is sufficient for the momentum

map to be Poisson.

Exercise 20 Show that cotangent-lift momentum maps are equivariant.
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Pulling back the equations

Since the solution ansatz (118) has been shown in the preceding Corol-
lary to be a Poisson map, the pull-back of the Hamiltonian from X∗ to
T ∗ Emb(S,Rn) gives equations of motion on the latter space that project
to the equations on X∗. The functions Qa(s, t) and Pa(s, t) in eqn (118)
satisfy canonical Hamiltonian equations. The pull-back of the Hamilto-
nian h[m] defined in eqn (113) on the dual of the Lie algebra g∗, to
T ∗ Emb(S,Rn) is easily seen to be consistent with what we had defined
before in eqn (123):

h[m] ≡
1

2
〈m , G ∗m〉 =

1

2
〈〈P , G ∗P〉〉 = HN [P,Q] . (128)

Since the momentum map JSing is Poisson, the functions Qa(s, t) and

Pa(s, t) in eqn (118) satisfy canonical Hamiltonian equations.

Remark 29 Recall that the coordinate s ∈ Rk labeling the functions in
eqn (126) is a ‘Lagrangian coordinate’ in the sense that it does not evolve
in time, but merely labels the solution.
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Remark 30 (Summary) In concert with the Poisson nature of the singular

solution momentum map, the singular solutions (118) in terms of Q and

P satisfy Hamiltonian equations and also define an invariant solution set

for the EPDiff equations. In fact, this invariant solution set is a singular

coadjoint orbit for the diffeomorphism group.

Exercise 21 Show that the natural pairing relations preserve the stationary

principle for the Lagrangian `[u] under the cotangent lift of Diff(Rn).

That is, state the conditions under which the stationary principle δS = 0

for

S =
∫
`[u] dt

will produce equivalent equations of motion for the two expressions for the

Lagrangian `[u] given by,

`[u] = 〈m , u〉 − h[m] (129)

= 〈〈P , Q̇ 〉〉 −HN [P,Q] , (130)
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Exercise 22 Verify that the momentum map in (118) is the variation in u

of the constrained action

S =
∫
`[u] dt+

∫ 1

0

∫
S1

[
P (s, t) ·

(
Q̇(s, t)− u(Q(s, t), t)

)]
ds dt .

Hint: Before taking variations in velocity u, insert a delta function as in

the momentum map proof in (126)∫ 1

0

∫
S1
P (s, t) · u(Q(s, t), t) ds dt

=
∫ 1

0

∫
S1

∫
R2
P (s, t) · u(x, t) δ

(
x−Q(s, t)

)
d2x ds dt .

This yields the momentum map (118) upon varying S with respect to u.

Exercise 23 Find the system of equations defined by minimizing the alter-

native action,

S =
∫ 1

0
`(u) dt+ 1

2σ2

∫ 1

0

∫
S1

∣∣∣Q̇(s, t)−u(Q(s, t), t)
∣∣∣2 ds dt, ` = 1

2

∥∥∥u(t)
∥∥∥2

g
,
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where σ2 > 0 is a constant parameter, the norm ‖ · ‖g defines a metric

on the tangent space g of the diffeomorphisms and | · | without subscript

is the Euclidean metric for vectors. Do the equations for the minimizers of

this action still admit the momentum-map relation in (118)?

Hint: in minimizing this action, the quantity Q̇(s, t) − u(Q(s, t)) is min-

imized by imposing it as a penalty, rather than constraining it to vanish

exactly. Before taking variations of this alternative action, it is helpful to

rewrite the penalty term equivalently as∫ 1

0

∫
S1

[
P (s, t) ·

(
Q̇(s, t)− u(Q(s, t), t)

)
−
σ2

2
|P |2(s, t)

]
ds dt .

This form of the penalty term may be seen to be equivalent to the original

one, upon taking stationary variations with respect to P to find the defining

relation

σ2P (s, t) = Q̇(s, t)− u
(
Q(s, t), t

)
.

In the limit σ2 → 0 the penalty form of the action and its variational

equations recovers the corresponding results from the constraint form.
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12 The momentum map for right action

T ∗ Emb(S,Rn)

JSing JS

X(Rn)∗ X(S)∗

�
�

�
�	

@
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12.1 JS and the Kelvin circulation theorem

The momentum map JSing involves Diff(Rn), the left action of the diffeo-

morphism group on the space of embeddings Emb(S,Rn) by smooth maps

of the target space Rn, namely,

Diff(Rn) : Q · η = η ◦Q, (131)

where, recall, Q : S → Rn. As before, one identifies the cotangent bundle

T ∗ Emb(S,Rn) with the space of pairs of maps (Q,P), with Q : S → Rn
and P : S → T ∗Rn.
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The momentum map for right action Another cotangent-lift momen-

tum map JS exists, associated with the right action of the diffeomorphism

group of S on the embeddings Emb(S,Rn) by smooth maps of the La-

grangian labels S (fluid particle relabeling by ηr : S → S). This particle-

relabelling action is given by

Diff(S) : Q · ηr = Q ◦ ηr , (132)

with parameter r = 0 at the identity. The infinitesimal generator of this

right action is

XEmb(S,Rn)(Q) =
d

dr

∣∣∣∣
r=0

Q ◦ ηr = TQ ·X , (133)

where X ∈ X is tangent to the curve ηr at r = 0. Thus, again taking

N = 1 (so we suppress the index a) and also letting αq in the momentum

map formula (125) be the cotangent vector (Q,P), one computes JS:
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〈JS(Q,P), X〉 = 〈(Q,P), TQ ·X〉

=
∫
S
Pi(s)

∂Qi(s)

∂sm
Xm(s) dks

=
∫
S
X

(
P(s) · dQ(s)

)
dks

=
(∫
S

P(s) · dQ(s)⊗ dks ,X(s)
)

= 〈P · dQ , X 〉 .

Consequently, the momentum map formula (125) yields

JS(Q,P) = P · dQ , (134)

with the indicated pairing of the one-form density P · dQ with the vector
field X. We have set things up so that the following is true.
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Proposition 5 The momentum map JS is preserved by the evolution

equations (120) and (121) for Q and P.

Proof. It is enough to notice that the Hamiltonian HN in eqn (123)

is invariant under the cotangent lift of the right action of Diff(S),

which amounts to the invariance of the integral over S with respect

to reparametrization given by the change of variables formula. (Keep in

mind that P includes a density factor.)
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Remark 31

• The result of Proposition 5 is similar to the Kelvin–Noether theorem for

circulation Γ of an ideal fluid, which may be written as

Γ =
∮
c(s)

D(s)−1P(s) · dQ(s) ,

for each Lagrangian circuit c(s), where D is the mass density and P is

again the canonical momentum density. This similarity should come as no

surprise, because the Kelvin–Noether theorem for ideal fluids arises from

invariance of Hamilton’s principle under fluid-parcel relabelling by the same

right action of the diffeomorphism group as in (132).

• Note that, being an equivariant momentum map, the map JS, as with

JSing, is also a Poisson map. Hence, substituting the canonical Poisson

bracket into relation (134); that is, the relation

M(x) =
∑
i

Pi(x)∇Qi(x)
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yields the Lie–Poisson bracket on the space of M ∈ X∗. We use the

different notations m and M because these quantities are analogous to

the body and spatial angular momentum for rigid body mechanics. In

fact, the quantity m given by the solution Ansatz m = JSing(Q,P) gives

the singular solutions of the EPDiff equations, while the expression

M(x) = JS(Q,P) =
∑
i

Pi(x)∇Qi(x)

is a conserved quantity.

• In the language of fluid mechanics, the expression of m in terms of (Q,P)

is an example of a Clebsch representation, which expresses the solution of

the EPDiff equations in terms of canonical variables that evolve by standard

canonical Hamilton equations. This has been known in the case of fluid

mechanics for more than 100 years. For modern discussions of the Clebsch

representation for ideal fluids, see, for example, [HK83, MW83, CM87].

• One last remark is in order. Namely, the special case in which S = M

is of course allowed. In this case, Q corresponds to the time evolution
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map ηt and P corresponds to its conjugate momentum. The quantity m

corresponds to the spatial (dynamic) momentum density (that is, right

translation of P to the identity), while M corresponds to the conserved

‘body’ momentum density (that is, left translation of P to the identity).

Exercise 24 To investigate the space-versus-body aspects discussed in the

last of these remarks, derive the Euler-Poincaré equation (111) as an opti-

mal control problem obtained by minimising the alternative action inte-

gral,

S =
∫
L(u,w, η) dt =

∫
l(u) +

1

2σ2

∣∣∣w − Adη−1 u
∣∣∣2
X

dt , (135)

where w := η−1η̇ is a left-invariant vector field under Diff(M). The

second summand imposes a penalty that strengthens as σ2 → 0. This

penalty function introduces a Riemannian structure that defines a norm

| · |X via the L2 inner product 〈 · , · 〉 : X∗ × X→ R.
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12.2 Brief summary

Emb(S,Rn) admits two group actions. These are: the group Diff(S)

of diffeomorphisms of S, which acts by composition on the right; and

the group Diff(Rn), which acts by composition on the left. The group

Diff(Rn) acting from the left produces the singular solution momentum

map, JSing. The action of Diff(S) from the right produces the conserved

momentum map,

JS : T ∗ Emb(S,Rn)→ X(S)∗ .

The two momentum maps may be assembled into a single figure as

follows:

T ∗ Emb(S,M)

JSing JS

X(M)∗ X(S)∗

�
�

�
�	

@
@
@
@R
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13 Numerical simulations of EPDiff in 2D

Many open problems and other future applications remain for the EPDiff

equation. For example, its analysis requires development of additional

methods for PDEs. In particular, while its smooth solutions satisfy a local

existence theorem that is analogous to the famous Ebin–Marsden theo-

rem for the Euler fluid equations [EM70], its singular solutions inevitably

emerge from smooth initial conditions in its initial-value problem. The

implications of this observation are discussed briefly in [HM04], where it

is conjectured that these singular solutions may arise from incompleteness

of the geodesic flows on the diffeomorphisms. This conjecture emphasizes

the opportunities for future analysis of the emergence of measure-valued

solutions from smooth initial conditions in nonlinear non-local PDEs. We

close this lecture by giving a few examples of the evolutionary behavior of

EPDiff singular solutions in simple two-dimensional situations from [HS04].

Figure 21 shows the results for the EPDiff equation when a straight peakon

segment of finite length and transverse profile u(x) = e−|x|/α is created
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initially moving rightward (East). In adjusting to the condition of zero

speed at its ends and the finite speed in its interior, the initially straight

segment expands outward as it propagates and curves into a peakon “bub-

ble.” This adjustment and change of shape requires propagation along the

wave crest. (Indeed, the wave crest gets longer.)

Figure 22 shows an initially straight segment whose velocity distribution is

exponential in the transverse direction, u(x) = e−|x|/α, but the width α

is 5 times wider than the lengthscale in the EPDiff equation. This initial

velocity distribution evolves under EPDiff to separate into a train of curved

peakon ‘bubbles,’ each of width α. This example illustrates the emergent

property of the peakon solutions in two dimensions.

Figure 23 shows an oblique wave-front collision that produces reconnec-

tions for the EPDiff equation in two dimensions. Figure 23 shows a single

oblique overtaking collision, as a faster expanding peakon wave front over-

takes a slower one and reconnects with it at the collision point via flow

along the wave crest.
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Figure 21: A peakon segment of finite length is initially moving rightward (East).
Because its speed vanishes at its ends and it has fully two-dimensional spatial dependence,
it expands into a peakon ‘bubble’ as it propagates. (The colors indicate speed: red is
highest, yellow is less, blue low, grey zero.)

142



13 NUMERICAL SIMULATIONS OF EPDIFF IN 2D

Figure 22: An initially straight segment of velocity distribution whose exponential profile
is wider than the width of the peakon solution will break up into a train of curved peakon
‘bubbles’. This example illustrates the emergent property of the peakon solutions in two
dimensions.
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Figure 23: A single collision is shown involving reconnection as the faster peakon
segment initially moving Southeast along the diagonal expands, curves and obliquely
overtakes the slower peakon segment initially moving rightward (East). This reconnection
illustrates one of the collision rules for the strongly two-dimensional EPDiff flow.
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Nonlinear wave reconnection. The phenomenon of nonlinear wave re-

connection is also observed in Nature. For example, it may be seen in

the images taken from the Space Shuttle of trains of internal waves in the

South China Sea shown in Figures 24 and 25. These transbasin oceanic

internal waves are some of the most impressive wave fronts seen in Nature.

About 200 kilometres in length and separated by about 75 kilometres, they

are produced every twelve hours by the tide through the Luzon strait be-

tween Taiwan and the Phillipines. They may be observed as they propagate

and interact with each other and with geographic features. The character-

istic property of these strongly nonlinear wavefronts is that they reconnect

when two of them collide transversely, as seen in Figures 23–25.

Figures 26–29 show additional collision configurations of peakon segments

moving in the plane [HS04].
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Figure 24: Satellite image using synthetic aperture radar (SAR) of internal wave fronts
propagating westward in the South China Sea. A multiwave merger occurs in the region
West of the Dong-Sha atoll, which is about 40 km in diameter. An expanded view of
this nonlinear wave merger is shown in Figure 25. SAR images from A. Liu, private
communication.
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Figure 25: SAR image of nonlinear internal waves West of DongSha in the South China
Sea shows merger upon collision due to flow along the wave crests. This sort of merger
with flow along the crests of the waves is also seen in the numerical simulations of EPDiff
in the plane shown in Figure 23.
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Solutions to selected exercises

Solution to Exercise 24

To avoid confusion with earlier notation η ∈ Diff(S) for the action of

diffeomorphisms on an embedded submanifold S, we denote elements of

Diff(M) as g ∈ Diff(M). The cross-derivative identities for ġ = gw

and g′ = gξ yield the standard formula for variations of the left-invariant

velocity,

ġ′ = g′w + gw′ = ġξ + gξ̇ =⇒ w′ = ξ̇ + adw ξ , (136)

where prime ( ′ ) denotes variational derivative and w′ = δw is the variation

in w inherited from the variation in g, g′ = δg . This formula will be
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substituted into the variation of the action integral in eqn (135) given by

0 = δS = δ
∫
L(u,w, η) dt =

∫ 〈
∂l

∂u
, u′

〉
+
〈
p, w′ − (Adg−1 u)′

〉
dt

(137)

where the momentum 1-form density, p, dual to the vector field w, is given

by

p :=
δL

δw
=

1

σ2

(
w − Adg−1 u

)
(138)

and the pairing by the L2 inner product 〈 · , · 〉 : X∗ × X → R is induced

by the variational-derivative operation from the Riemannian structure in-

troduced by the penalty term. Formula (136) gives the variation ω′ in eqn

(137) in terms of the vector field ξ = g−1g′ ∈ X. One calculates the other

variation as

(Adg−1 Ω)′ = (g−1Ωg)′ = Adg−1 u
′ + ad(Ad

g−1 u) ξ .
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Hence, the variation of the action integral in (137) becomes

0 = δS =
∫ 〈

δl

δu
, u′

〉
+
〈
p , ξ̇ + adw ξ − ad(Ad

g−1 u) ξ − Adg−1 u
′)
〉
dt

=
∫ 〈

δl

δu
− Ad∗g−1 p , u

′
〉
−
〈
ṗ− ad∗ω π + ad∗(Ad

g−1 u) p , ξ

〉
dt ,

where we assume endpoint terms may be ignored when integrating by parts.

Requiring the coefficients of the independent variations to vanish yields the

expressions we seek,

m :=
δl

δu
= Ad∗g−1 p ,

ṗ− ad∗w p = − ad∗(Ad
g−1 u) p . (139)

The first of these relates the momenta p,m ∈ X∗ dual to the vector fields

w, u ∈ X exactly as the spatial and body angular momenta are related for

the rigid body.

The variational eqns (139) imply, when paired with a fixed vector field
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ξ ∈ X, that

d

dt
〈m, ξ〉 =

d

dt

〈
Ad∗g−1 p , ξ

〉
On taking d

dt Ad∗
g−1 =

〈
Ad∗g−1

(
ṗ− ad∗w p

)
, ξ
〉

On using p-eqn (139) = −
〈

Ad∗g−1

(
ad∗(Ad

g−1 u) p
)
, ξ

〉
On using Ad & ad definitions = −

〈
p , ad(Ad

g−1 u)

(
Adg−1 ξ

)〉
On rearranging = −

〈
p , Adg−1

(
adu ξ

)〉
On taking duals = −

〈
ad∗u

(
Ad∗g−1 p

)
, ξ
〉

On substituting the definition of m = −〈ad∗u m, ξ〉 .
This recovers EPDiff, the Euler-Poincaré equation,

d

dt

δl

δu
= − ad∗u

δl

δu
, or

d

dt

(
Ad∗g

δl

δu

)
= 0 .

Thus, using a penalty term in the action integral to impose the action of
Adg−1 on vector fields as a ‘soft constraint’ when σ2 > 0 yields EPDiff

dynamics for coadjoint motion on the L2 dual, X∗, of the right-invariant
Lie-algebra, X.
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Equation (139) for p may also be written as, cf. eqn (138),

ṗ− σ2 ad∗p p = 0 . (140)

Since ad∗ and Lie derivative with respect to a vector field are the same

for 1-form densities, this relation for the evolution of the left-invariant

momentum density may be interpreted as

d

dt

(
p · dx⊗ dV

)
= 0 along

dx

dt
= −σ2p . (141)

In Euclidean components, this is

∂tpi = σ2 ∂

∂xj

(
pip

j +
1

2
δ
j
i |p|

2
)
,

which implies conservation of the integrated left linear momentum,

d

dt

∫
pi(x, t) d

3x = 0 ,

for homogeneous boundary conditions. This is the analogue for EPDiff of

the conservation of spatial angular momentum for the rigid body.
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Figure 26: The convergence of two peakon segments moving with reflection symmetry
generates considerable acceleration along the midline, which continues to build up after
the initial collision.
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Figure 27: The head-on collision of two offset peakon segments generates considerable
complexity. Some of this complexity is due to the process of annihilation and recreation
that occurs in the 1D antisymmetric head-on collisions of a peakon with its reflection,
the antipeakon, as shown in Figure 12.3. Other aspects of it involve flow along the crests
of the peakon segments as they stretch.
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Figure 28: The overtaking collisions of these rotating peakon segments with five-
fold symmetry produces many reconnections (mergers), until eventually one peakon ring
surrounds five curved peakon segments. If the evolution were allowed to proceed further,
reconnections would tend to produce additional concentric peakon rings.

155



13 NUMERICAL SIMULATIONS OF EPDIFF IN 2D

Figure 29: A circular peakon ring initially undergoes uniform rightward translational
motion along the x axis. The right outer side of the ring produces diverging peakon
curves, which slow as they propagate outward. The left inner side of the ring, however,
produces converging peakon segments, which accelerate as they converge. They collide
along the midline, then develop into divergent peakon curves still moving rightward that
overtake the previous ones and collide with them from behind. These overtaking collisions
impart momentum, but they apparently do not produce reconnections.
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Lecture #3, Computational anatomy:
Contour matching using EPDiff

This lecture explains that EPDiff is the perfect tool to realize D’Arcy

Thompson’s concept of comparing shapes, upon choosing a norm that

measures the differences between anatomical forms defined by contours.
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14 Introduction to computational anatomy (CA)

Morphology and computational anatomy

Computational anatomy (CA) must measure and analyse a range of vari-
ations in shape, or appearance, of highly deformable biological structures.
The problem statement for CA was formulated long ago in a famous book
by D’Arcy Thompson [Tho92]

In a very large part of morphology, our essential task lies in the
comparison of related forms rather than in the precise definition
of each. . . . This process of comparison, of recognizing in one form
a definite permutation or deformation of another, . . . lies within
the immediate province of mathematics and finds its solution in
. . . the Theory of Transformations. . . . I learnt of it from Henri
Poincaré.
– D’Arcy Thompson, On Growth and Form (1917)
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Figure 30: One of D’Arcy Thompson’s illustrations of the transformation

of two-dimensional shapes from one fish to another, from [Tho92].
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D’Arcy Thompson’s book [Tho92] examines the idea that the growth and

form of all plants and animals can be explained by mathematical principles.

His book also acts as a practical guide to understanding how flows of

smooth invertible maps may be used to compare shapes. For example,

his chapter on transformations contains remarkable diagrams showing how

differences in the forms of, say, species of fish can be understood in terms

of smooth invertible distortions of the reference coordinate systems onto

which they are mapped. A fish is drawn on a square grid, which is then

stretched, sheared or shifted so that the deformed image may be identified

as that of a related species, as in Figures 30 and 31.

The flow generated by the EPDiff equation transforms one shape along a

curve in the space of smooth invertible maps that takes it optimally into

another with respect to the chosen norm. Its application to contours in

biomedical imaging, for example, realizes D’Arcy Thompson’s concept of

quantifying growth and measuring other changes in shape, such as occurs

in a beating heart, by providing the transformative mathematical path

between the two shapes.
160



14 INTRODUCTION TO COMPUTATIONAL ANATOMY (CA)

Figure 31: More illustrations by D’Arcy Thompson of the transformation

of two-dimensional shapes from one fish to another, from [Tho92].
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Computational anatomy (CA)

The pioneering work of Bookstein and Grenander first took up D’Arcy

Thompson’s challenge by introducing a method called template match-

ing [Boo91, Gre81]. The past several years have seen an explosion in the

use and development of template-matching methods in computer vision

and medical imaging seem to be fulfilling D’Arcy Thompson’s expecta-

tion. These methods enable the systematic measurement and comparison

of anatomical shapes and structures in medical imagery. The mathemat-

ical theory of Grenander’s deformable template models, when applied to

these problems, involves smooth invertible maps (diffeomorphisms). See,

e.g., [MTY02] for a review. In particular, the template-matching approach

defines classes of Riemannian metrics on the tangent space of the diffeo-

morphisms and employs their projections onto specific landmark shapes, or

image spaces, for the representation of CA data.

The problem for CA then becomes to determine the minimum distance

between two images as specified in a certain representation space, V , on
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which the diffeomorphisms act. Metrics are written so that the optimal

path in Diff satisfies an evolution equation. This equation turns out to be

EPDiff, when V is a closed contour representing the shape of the image. A

discussion of EPDiff and the application of its peakons and other singular

solutions for matching templates defined by contours of image outlines

appears in [HRTY04].

Objectives

This lecture introduces the variational formulation of template matching

problems in computational anatomy. It makes the connection to the

EPDiff evolution equation and discusses the relation of images in CA

to the singular momentum map of the EPDiff equation. Then it draws

some consequences of EPDiff for the outline matching problem in CA

and gives a numerical example. The numerical example is reminiscent

of the chapter in D’Arcy Thompson’s book where the shapes of fish are

related to each other by stretching one shape into another on a square

grid.
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This lecture also discusses how the Euler–Poincaré theory may be used

to develop new perspectives in CA. In particular, these lectures discuss

how CA may be informed by the concept of weak solutions, solitons and

momentum maps for geodesic flows [HRTY04, CH93, HS04]. For example,

among the geometric structures of interest in CA, the landmark points and

image outlines may be identified with the singular solutions of the EPDiff

equation.

The singular solutions are given by the momentum map JSing for EPDiff

earlier. The momentum map JSing also yields the canonical Hamiltonian

formulation of peakon dynamics. This evolution, in turn, provides a com-

plete parameterization of the landmarks and image outlines by the linear

vector space comprising their canonical positions and momenta. The sin-

gular momentum map JSing for EPDiff provides an isomorphism between

the landmarks and outlines for images and the singular soliton solutions of

the EPDiff equation. This isomorphism provides a dynamical paradigm for

CA, and a representation of anatomical data in a linear vector space.
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Computational anatomy:
Euler–Poincaré image matching

15 Overview of pattern matching

This lecture explains how the pattern-matching problem for images is

governed by the Euler–Poincaré equations of geodesic motion for a La-

grangian given by a right-invariant norm on (TDiff × TN)/Diff, where

N is the manifold of images on which Diff acts.

Pattern matching is an important component of imaging science, and is

fundamental in computational anatomy (computerized anatomical analysis

of medical images). When comparing images, the purpose is to find an

optimal deformation that aligns the images and matches their photometric
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properties. Diffeomorphic pattern matching methods have been developed

to achieve both this objective and the additional goal of defining a (Rieman-

nian) metric structure on spaces of deformable objects [DGM98, Tro98].

This approach has found many applications in medical imaging, where

the objects of interest include images, landmarks, measures (supported

on point sets) and currents (supported on curves and surfaces). These

methods usually address the registration problem by solving a variational

problem of the form

Minimize
(
d(id, g)2 + Error term(g.ntemp, ntarg)

)
(142)

over all diffeomorphisms g, where ntemp and ntarg are the images being

compared (usually referred to as the template and the target), (g, n) 7→ g.n

is the action of diffeomorphisms on the objects and d is a right-invariant

Riemannian distance on diffeomorphisms.

In problems formulated as in eqn (142), the error term breaks the metric

aspects inherited from the distance d on the diffeomorphisms because the

error term has an inherent template vs. target asymmetry. With the aim of
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designing a fully metric approach to the template-matching problem, the

metamorphosis approach was formulated in [TY05]. The metamorphosis

approach embraces what are called morphing and warping in computer

graphics while endowing the composition of the two operations with a

Riemannian variational structure. The metamorphosis approach provides

interesting alternatives to the pattern-matching approach based on eqn

(142), in the context of a metric framework. This lecture explains the

Lagrangian formulation for metamorphosis of images developed in [HTY09]

that includes the Riemannian formalism introduced in [TY05].

The discussion will be general enough to include a range of applications.

Consider a manifold N that is acted upon by a Lie group G. The manifold

N contains the deformable objects and G is the Lie group of deformations,

which is taken to be the group of diffeomorphisms. (A few examples of

the space N will be discussed later. In particular, N could be another Lie

group.)
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Definition 11 A metamorphosis [TY05] is a pair of curves (gt, ηt) ∈ G×N
parameterized by time t, with g0 = id. Its image is the curve nt ∈ N de-

fined by the action nt = gt.ηt. The quantities gt and ηt are called the

deformation component of the metamorphosis, and its template compo-

nent, respectively. When ηt is constant, the metamorphosis reduces to

standard template matching, which is a pure deformation. In the general

case, the image is a composition of deformation and template variation.

This lecture places the metamorphosis approach into a Lagrangian formu-

lation, and applies the Euler–Poincaré variational framework to derive its

evolution equations. Analytical questions about these equations (for ex-

ample, the existence and uniqueness of their solutions) require additional

assumptions on G and the space N of deformed objects that are beyond

the scope of the present text. For analytical discussions of the equations

in this lecture, see [HTY09].

The next section provides notation and definitions related to the problem

of metamorphosis.
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16 Notation and Lagrangian formulation

The letters η or n will be used to denote elements of N , the former being

associated to the template component of a metamorphosis, and the latter

to its image under the action of the group.

The variational problem we shall study optimizes over metamorphoses

(gt, ηt) by minimizing, for some Lagrangian L, the integral∫ 1

0
L(gt, ġt, ηt, η̇t)dt , (143)

with fixed endpoint conditions for the initial and final images n0 and n1

(with nt = gtηt) and g0 = idG (so only the images are constrained at the

endpoints, with the additional normalization g0 = id).

Let g denote the Lie algebra of G and let (g, Ug, η, ξη) ∈ TG× TN . We

will consider Lagrangians defined on TG× TN , that satisfy the following
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16 NOTATION AND LAGRANGIAN FORMULATION

invariance conditions: there exists a function ` defined on g × TN such

that

L(g, Ug, η, ξη) = `(Ugg
−1, gη, gξη).

In other words, L is taken to be invariant under the right action of G on

G×N defined by (g, η)h = (gh, h−1η).

For a metamorphosis (gt, ηt), the following definitions

ut = ġtg
−1
t , nt = gtηt , and νt = gtη̇t (144)

lead by right invariance to an expression for the reduced Lagrangian

L(gt, ġt, ηt, η̇t) = `(ut, nt, νt) . (145)
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Notation about Lie brackets and pairings

The Lie derivative with respect to a vector field X will be denoted £X .

The Lie algebra of G is identified with the set of right-invariant vector fields

Ug = ug, u ∈ TeG = g, g ∈ G. If G acts on a set Ñ , and f : Ñ → R,

one finds £uf(ñ) = (d/dt)f(gtñ) with g0 = id and ġt(0) = u.

The Lie bracket [u, v] on g is defined by

£[u,v] = −(£u£v − £v£u) (146)

and the associated adjoint operator is adu v = [u, v]. Letting Ig(h) =

ghg−1 and Advg = £vIg(id) yields adu v = £u(Adv)(id). When G is a

group of diffeomorphisms, this defines

aduv = du v − dv u , (147)

as in eqn (6).
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16 NOTATION AND LAGRANGIAN FORMULATION

The pairing between a linear form l and a vector u will be denoted
〈
l, u

〉
.

Duality with respect to this pairing will be denoted with an asterisk ( · )∗.

When the Lie group G acts on a manifold Ñ , the associated diamond

operation (�) (or dual action) is defined on TÑ∗ × TÑ and takes values

in g∗, so that

� : TÑ∗ × TÑ → g∗ . (148)

The diamond operation is defined in terms of the pairing
〈
· , ·

〉
: g∗×g→

R, which in this notation is defined as〈
γ � ñ, u

〉
= −

〈
γ, uñ

〉
TÑ∗

, (149)

where (γ, ñ) ∈ TÑ∗× Ñ , uñ = £uη̃ and the bracket
〈
· , ·

〉
TÑ∗

denotes

the pairing between TN and TN∗.
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17 SYMMETRY-REDUCED EULER EQUATIONS

17 Symmetry-reduced Euler equations

We compute the symmetry-reduced Euler equations as stationarity condi-

tions that extremalize the reduced action, defined in terms of the reduced

Lagrangian by,

Sred :=
∫ 1

0
`(ut, nt, νt)dt , (150)

with respect to variations δu and ω = δn = δ(gη) for fixed endpoint

conditions n0 and n1. The variation δν can be obtained from n = gη and

ν = gη̇ yielding

ṅ = ν + un and ω̇ = δν + uω + δun , (151)

in which Lie algebra action is denoted by concatenation from the left. For

example, un = £un denotes the Lie derivative of n along the vector field

u, etc. The computations are performed in a local chart on TN in terms

of which partial derivatives are taken.
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17 SYMMETRY-REDUCED EULER EQUATIONS

Taking stationary variations of Sred yields∫ 1

0

(〈
δ`

δu
, δut

〉
+

〈
δ`

δn
, ωt

〉
+

〈
δ`

δν
, ω̇t − utωt − δut nt

〉)
dt = 0 .

(152)

The δu-term yields the constant of motion,

δ`

δu
+
δ`

δν
� nt = 0 . (153)

A slight abuse of notation is allowed in writing δ`/δν ∈ T (TN)∗ as a linear

form on TN via
〈
δ`/δν, z

〉
:=

〈
δ`/δν, (0, z)

〉
.

After an integration by parts in time, the ω-term in the variation equation

(152) yields,

∂

∂t

δ`

δν
+ ut ?

δ`

δν
−
δ`

δn
= 0 , (154)

with additional notation for the ? operation, defined by〈
u ?

δ`

δν
, ω

〉
:=

〈
δ`

δν
, uω

〉
. (155)
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17 SYMMETRY-REDUCED EULER EQUATIONS

The endpoint terms vanish in the integration by parts for the ω-term be-

cause δn vanishes at the endpoints for n0 and n1 fixed. These manipula-

tions have proven the following.

Theorem 6 (Metamorphosis equations)

The symmetry-reduced Euler equations associated with extremals of the

reduced action Sred in eqn (150)∫ 1

0
`(ut, nt, νt)dt

with fixed endpoint conditions n0 and n1 under variations of the right-

invariant velocity (δu) and image (ω = δn) defined in eqn (144) consist

of the system of metamorphosis equations

δ`

δu
+
δ`

δν
� nt = 0 ,

∂

∂t

δ`

δν
+ ut ?

δ`

δν
=
δ`

δn
,

ṅt = νt + utnt .


(156)
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Remark 32 The quantity δ`
δu + δ`

δν � n is the conserved momentum arising

from Noether’s theorem for right invariance of the Lagrangian. As we shall

see, the special form of the endpoint conditions (fixed n0 and n1) ensures

that this conserved momentum vanishes identically.
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Remark 32 The quantity δ`
δu + δ`

δν � n is the conserved momentum arising

from Noether’s theorem for right invariance of the Lagrangian. As we shall

see, the special form of the endpoint conditions (fixed n0 and n1) ensures

that this conserved momentum vanishes identically.

18 Euler–Poincaré reduction

A dynamical system equivalent to the metamorphosis equations (156) may

be obtained by using Euler–Poincaré reduction. In this setting, one takes

variations in the group element (δg) and in the template (δη) instead of

the velocity and the image. Set

ξt = δgtg
−1
t and $t = gtδηt . (157)
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These definitions lead to expressions for δu, δn and δν. For the velocity

one finds the constrained variation,

δut = ξ̇t + [ξt, ut] . (158)

This is a standard relation in Euler–Poincaré reduction. From the definition

nt = gtηt in (144) one has the variational relation

δnt = δ(gtηt) = $t + ξtnt . (159)

From the definition νt = gtη̇t, one finds

δνt = gtδη̇t + ξtνt , (160)

and from $t = gtδηt one observes

$̇t = ut$t + gtη̇t , (161)

which, in turn, yields

δνt = $̇t + ξtνt − ut$t . (162)

The endpoint conditions for ξ and $ are computed, as follows. One starts

at t = 0 with g0 = id and n0 = g0η0 = cst, which implies ξ0 = 0 and
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$0 = 0. At t = 1, the relation g1η1 = cst yields an endpoint condition on

the variations at t = 1,

δ(gtηt)

∣∣∣∣
t=1

= ξ1n1 +$1 = 0 . (163)

The variation of the reduced action Sred in eqn (150) is now expressed as∫ 1

0

(〈
δ`

δu
, ξ̇t − adut ξt

〉
+

〈
δ`

δnt
, $t + ξtnt

〉
+

〈
δ`

δν
, $̇t + ξtνt − ut$t

〉)
dt = 0 .

In the integrations by parts in time to eliminate ξ̇t and $̇t, the endpoint

terms sum to 〈
(δ`/δu)1, ξ1

〉
+
〈

(δ`/δν)1, $1

〉
.

Using the endpoint condition (163) on the variations at t = 1 allows the

last term to be rewritten as〈
(δ`/δν)1, $1

〉
= −

〈
(δ`/δν)1, ξ1n1

〉
=
〈

(δ`/δν)1 � n1, ξ1

〉
.
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18 EULER–POINCARÉ REDUCTION

One therefore obtains the stationarity relation at time t = 1,

δ`

δu
(1) +

δ`

δν
(1) � n1 = 0 . (164)

After another integration by parts, the ξ-terms provide the evolution equa-

tion for δ`/δu,

∂

∂t

δ`

δu
+ ad∗ut

δ`

δu
+
δ`

δn
� nt +

δ`

δν
� νt = 0 . (165)

Likewise, the $-terms provide the evolution equation for δ`/δν,

∂

∂t

δ`

δν
+ ut ?

δ`

δν
−
δ`

δn
= 0. (166)

These additional manipulations have proven the following.
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Theorem 7 (Metamorphosis dynamics)
The Euler–Poincaré equations associated with extremals of the reduced
action Sred in eqn (150)

Sred =
∫ 1

0
`(ut, nt, νt)dt

with fixed endpoint conditions n0 and n1 under variations in the group
element (δg) and in the template (δη) consist of the system of equations
for Euler–Poincaré metamorphosis dynamics

∂

∂t

δ`

δu
+ ad∗ut

δ`

δu
+
δ`

δn
� nt +

δ`

δν
� νt = 0 ,

∂

∂t

δ`

δν
+ ut ?

δ`

δν
−
δ`

δn
= 0 ,

δ`

δu
(1) +

δ`

δν
(1) � n1 = 0 ,

ṅt = νt + utnt .



(167)

Proposition 6 The dynamical system (167) is equivalent to eqn (156).
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18 EULER–POINCARÉ REDUCTION

Proof. The equivalence is obvious, since the two systems of equations
characterize the same critical points of the reduced action obtained by
different independent variations. However, an instructive proof can be
given by rewriting the first equation in (167) as a Kelvin–Noether theorem
for images,

∂

∂t

(
δ`

δu
+
δ`

δν
� n

)
+ ad∗ut

(
δ`

δu
+
δ`

δν
� n

)
= 0 . (168)

Indeed, any solution of (167) satisfies,

∂

∂t

( δ`
δut

+
δ`

δν
� nt

)
=

∂

∂t

δ`

δu
+
( ∂
∂t

δ`

δν

)
� nt +

δ`

δν
� ṅt

=
∂

∂t

δ`

δu
+
( δ`
δn
− ut ?

δ`

δν

)
� nt +

δ`

δν
� (νt + utnt)

=
∂

∂t

δ`

δu
+
δ`

δn
� nt +

δ`

δν
� νt −

(
ut ?

δ`

δν

)
� nt +

δ`

δν
� (utnt)

= − ad∗ut
δ`

δu
− ad∗ut(

δ`

δν
� nt).
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In the last equation, we have used the fact that, for any α ∈ g,〈
δ`

δν
� (un)−

(
u ?

δ`

δν

)
� n , α

〉
= −

〈
δ`

δν
, α(un)− u(αn)

〉

=

〈
δ`

δν
, [u, α]n

〉

= −
〈
δ`

δν
� n , [u, α]

〉

= −
〈

ad∗ut

(
δ`

δν
� nt

)
, α

〉
.

Consequently, the first equation in the system (167) is equivalent to eqn

(168), which in turn may be rewritten equivalently as,

∂

∂t

(
Ad∗gt

(
δ`

δu
+
δ`

δν
� n

))
= 0 . (169)

This equation combined with (δ`/δu)1 +(δ`/δν)1�n1 = 0 implies the first

equation in (156).
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Exercise 25 Show that these manipulations prove the claim of Remark 32

that the quantity

δ`

δu
+
δ`

δν
� n

is the conserved momentum arising from Noether’s theorem for right in-

variance of the reduced Lagrangian in eqn (145).

Exercise 26 Compute the Hamiltonian and Lie–Poisson bracket for the

system (167) governing metamorphosis dynamics.
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19 Semidirect-product examples

19.1 Riemannian metric

A primary application of this framework can be based on the definition of

a Riemannian metric on G×N that is invariant under the right action of

G: (g, η)h = (gh, h−1η). The corresponding Lagrangian then takes the

form

l(u, n, ν) = ‖(u, ν)‖2
n . (170)

The variational problem is now equivalent to the computation of geodesics

for the canonical projection of this metric from G×N onto N . This frame-

work was introduced in [MY01]. The evolution equations were derived and

studied in [TY05] in the case l(u, n, ν) = |u|2g + |ν|2n, for a given norm, |.|g,
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on g and a pre-existing Riemannian structure on N . This Riemannian met-

ric on N incorporates the group actions. An example of its application is

given below for images. First, though, let us discuss the semidirect-product

case GsN .

19.2 Semidirect product

Assume that N is a group and that for all g ∈ G, the action of g on N is a

group homomorphism: For all n, ñ ∈ N , g(nñ) = (gn)(gñ) (for example,

N can be a vector space and the action of G can be linear). Consider the

semidirect product GsN with

(g, n)(g̃, ñ) = (gg̃, (gñ)n) , (171)

and build onGsN a right-invariant metric constrained by its value ‖ ‖(idG,idN)

at the identity. Then, optimizing the geodesic energy in GsN between
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(idG, n0) and (g1, n1) with fixed n0 and n1 and free g1 yields a particular
case of metamorphosis.

Right invariance for the metric on GsN implies

‖(U, ζ)‖(g,n) = ‖(Ug̃, (Uñ)n+ (gñ)ζ‖(gg̃,(gñ)n) , (172)

which yields, upon using (g̃, ñ) = (g−1, g−1n−1) and letting u = Ug−1,

‖(U, ζ)‖(g,n) = ‖(u, (un−1)n+ n−1ζ‖(idG,idN)

= ‖(u, n−1(ζ − un)‖(idG,idN) ,

which may be proved by using the identity

0 = u(n−1n) = (un−1)n+ n−1(un) .

Consequently, the geodesic energy on GsN for a path of unit length is∫ 1

0
‖(ut, n−1

t (ṅt − utnt)‖2
(idG,idN) . (173)

Optimizing this geodesic energy with fixed n0 and n1 is equivalent to
solving the metamorphosis problem with

l(u, n, ν) = ‖(u, n−1ν)‖2
(idG,idN). (174)
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This turns out to be a particular case of the previous example. The situa-

tion is even simpler when N is a vector space. In this case, n−1n′ = n′−n
and one computes (g, n)(g̃, ñ) = (gg̃, gñ+ n) so that

(ġ, ṅ)(g̃, ñ) = (ġg̃, ġñ+ ṅ) .

Consequently,

(ġ, ṅ)(g−1, g−1n−1) = (ġg−1, ġg−1n−1 + ṅ) = (u,−un+ ṅ) = (u, ν)

and the symmetry-reduced Lagrangian does not depend on n. The systems

(156) and (167) take a very simple form when the group operation on N

is additive. Namely, they become, respectively,

δ`

δu
+
δ`

δν
� nt = 0 ,

∂

∂t

δ`

δν
+ ut ?

δ`

δν
= 0 ,

ṅt = νt + utnt ,


(175)
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and the equivalent dynamical system

∂

∂t

δ`

δu
+ ad∗ut

δ`

δu
+
δ`

δν
� νt = 0 ,

∂

∂t

δ`

δν
+ ut ?

δ`

δν
= 0 ,

δ`

δu
(1) +

δ`

δν
(1) � n1 = 0 ,

ṅt = νt + utnt ,



(176)

in which concatenation as in utnt denotes Lie algebra action, as before.

Thus, when N is a vector space, the evolution of the variable n ∈ N

decouples from the rest of the dynamical system (176).
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Remark 33 Even when N is not a vector space, metamorphoses that are

obtained from the semidirect-product formulation are specific among gen-

eral metamorphoses, because they satisfy the conservation of momentum

property that comes with right invariance of the metric under the Lie group.

This conservation equation may be written as, see eqn (169),(
δ`

δut
,
δ`

δνt

)
= Ad∗(gt,nt)−1

(
δ`

δu0
,
δ`

δν0

)
, (177)

where the adjoint representation is associated with the semidirect-product

Lie group action. This property (that we do not write in the general case)

will be illustrated in an example below.
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19.3 Image matching

Consider the case when N is a space of smooth functions from domain Ω

to R, that we will call images, with the action

(g, n) 7→ n ◦ g−1 . (178)

A simple case of metamorphoses [MY01] can be obtained with the La-

grangian

`(u, ν) = ‖u‖2
g +

1

σ2
‖ν‖2

L2 . (179)

If w ∈ g and n is an image, then wn = −∇nTw, so that〈
δ`

δν
� n , w

〉
=

〈
δ`

δν
, ∇nTw

〉
. (180)

Thus, since δ`/δν = 2ν/σ2, the first equation in the system (175) is

Lgut :=
δ`

δu
= −

1

σ2
νt∇nt , (181)
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where Lg is the positive symmetric operator associated with the norm

‖ut‖2
g by

‖ut‖2
g =

〈
Lgut, ut

〉
. (182)

Now, u ? (δ`/δν) is defined by〈
u ?

(
δ`

δν

)
, ω

〉
=

〈
δ`

δν
, uω

〉

= −
〈
δ`

δν
, ∇ωTu

〉

= −
1

σ2

〈
ν, ∇ωTu

〉
=

1

σ2

〈
div(νu), ω

〉
,

which yields the second equation in the system (175)

ν̇t +
1

σ2
div(νtut) = 0 . (183)
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We denote z = ν/σ2 and rewrite the three equations in the system (175)

as

Lgut = −zt∇nt ,

żt + div(ztut) = 0 ,

ṅt +∇nTt ut = σ2zt .


(184)

Existence and uniqueness of solutions for this system were proved in [TY05].

From a visual point of view, image metamorphoses are similar to what is

usually called morphing in computer graphics. The evolution of the image

over time, t 7→ nt, is a combination of deformations and image intensity

variation. Algorithms and results for the solution of the boundary-value

problem (minimize the Lagrangian between two images at the initial and fi-

nal times) can be found in [MY01]. Two examples of minimizing geodesics

between a pair of images are also provided in Figure 32.
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Metamorphosis is an optimal-control matching problem that

seeks geodesics on semidirect-product groups – this means

that it fits perfectly into the Euler-Poincaré framework!

Figure 32: Geodesic flow on DiffsF governs image morphing. The figure plots the
morphing process in the (conjugate) F-variable as a function of time between two pairs
of images. The optimal trajectories for nt are computed between the first and last images
in each pair. The remaining images show nt at intermediate points in time. (Figure from
DD Holm, A Trouvé and L.Younes, Quart Appl Math, 2009.)
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Image matching can also be seen from the semidirect-product viewpoint,

since the action is linear and the Lagrangian takes the form (174) with

n−1ν = ν. This implies that the momentum in this case, given by the

pair (Lgu, z), is conserved in a fixed frame and the n-equation in (184) is

absent. Working out the conservation equation Ad∗(g,n)(Lgu, z) = const

in this case yields the equations

Lgut + zt∇nt = const

and

zt = det(Dg−1
t )z0 ◦ g−1

t .

This last condition is the integrated form of the second equation in the

eqn set (184), while the first equation of the set (184) evaluates the con-

servation law as Lgut + zt∇nt = 0.
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Exercise 27 Solve Exercise 23 again from the viewpoint of metamorphoses

by writing the action A using the Lagrangian in Riemannian form given in

eqn (179) as,

A =
1

2

∫ 1

0

∥∥∥u(t)
∥∥∥2

g
dt+

1

2σ2

∫ 1

0

∫
S1

∣∣∣ν(s, t)
∣∣∣2 ds dt ,

in which ν(s, t) is defined by

ν(s, t) := Q̇(s, t)− u(Q(s, t), t) ∈ TR2 ,

as was done in Exercise 23.

Exercise 28 Write the metamorphosis equations in the previous exercise

when the integral
∫
S1 ds over the continuous parameter s is replaced by a

sum
∑
s over a finite set of points in R2 known as the landmarks Qs(t) ∈ R2

of the image.
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19.4 A special case of 1D metamorphosis: CH2 equations

In 1D, the evolutionary form of the system (167) or equivalently (184)

becomes,

∂tm+ u∂xm+ 2m∂xu = −ρ∂xρ , ∂tρ+ ∂x(ρu) = 0 (185)

upon denoting

m = Lgu = (1− ∂2
x)u and ρ = σz .

Up to a minus sign in front of ρ∂xρ in the first equation that does not

affect its integrability as a Hamiltonian system, this is the two-component

Camassa–Holm system (CH2) studied in [CLZ05, Fal06, Kuz07]. The

system (185) in our case is equivalent to the compatibility for dλ/dt = 0

of the two linear equations

∂2
xψ +

(
− 1

4 +mλ+ ρ2λ2
)
ψ = 0 , (186)

∂tψ = −
(

1
2λ + u

)
∂xψ + 1

2ψ∂xu . (187)
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Because the eigenvalue λ in (186) is time independent, the evolution of

the nonlinear semidirect-product system (185) is said to be isospectral.

The second equation (187) is the evolution equation for the eigenfunction

ψ. Thus, the semidirect-product system (185) for the metamorphosis of

images in 1D is also completely integrable and possesses soliton solutions

for the CH2 system that may be obtained by using the inverse scatter-

ing transform method. An identification of soliton dynamics in image

matching of graphical structures, landmarks and image outlines for com-

putational anatomy using the invariant subsystem of system (185) with

ρ = 0 is found in [HRTY04].

19.5 Modified CH2 equations

The Euler–Poincaré system (167) for semidirect-product metamorphosis

leads to an interesting modification of the CH2 equations (185) when
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G = Diff(R) and N = F(R) (smooth functions). These modified CH2

equations follow from a Lagrangian defined as a norm on Diff(R)sF(R)

in (179) given in this notation by

`(u, ρ) = 1
2‖u‖

2
H1 + 1

2‖ρ‖
2
H−1

= 1
2‖u‖

2
L2 +

α2
1

2 ‖ux‖
2
L2 + 1

2‖(ρ− ρ0)‖2
L2 +

α2
2

2 ‖ρx‖
2
L2 , (188)

where α1 and α2 are constant length scales, ρ is defined in terms of ρ by

(1− α2
2∂

2
x)ρ = ρ+ ρ0 , (189)

and ρ0 is the constant value of ρ as |x| → ∞. Taking stationary variations

of the reduced action Sred =
∫ 1
0 `(u, ρ)dt yields

0 = δSred =
∫ 1

0

(〈
δ`

δu
, δu

〉
+

〈
δ`

δρ
, δρ

〉)
dt

=
∫ 1

0

(〈
(1− α2

1∂
2
x)u , δu

〉
+

〈
ρ , δρ

〉)
dt . (190)

Hence, the Euler–Poincaré equations (165) and (166) yield the following

modification of the CH2 system (185) with m = (1− α2
1∂

2
x)u

∂tm+ u∂xm+ 2m∂xu = −ρ∂xρ with ∂tρ+ ∂x(ρu) = 0 . (191)
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This modification may seem slight, but it has two important effects. First,

very likely, it destroys the complete integrability of the 1D CH2 system

(185), although this has not yet been proven. The apparent loss of in-

tegrability may seem unfortunate. However, as a sort of compensation

for that loss, direct substitution shows that the modified system gains a

property not possessed by the original CH2 system. Namely, the modified

system admits a finite-dimensional invariant manifold of singular solutions

in a form that generalizes the peakon solutions of CH to

m(t, x) =
M∑
i=1

Pi(t) δ
(

(x−Qi(t)
)

and ρ(t, x) =
M∑
i=1

wi δ
(

(x−Qi(t)
)
,

(192)

in which wi = cst for i = 1, . . . ,M . Moreover, the functions Pi(t) and

Qi(t) satisfy Hamilton’s canonical equations,

dQi
dt

=
∂HM
∂Pi

and
dPi
dt

= −
∂HM
∂Qi

, (193)
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with M -particle Hamiltonian,

HM =
1

2

M∑
i,j=1

(
PiPj e−|Qi−Qj|/α1 + wiwj e−|Qi−Qj|/α2

)

+ ρ0

M∑
i=1

wi e−|Qi−Qj|/α2 . (194)

Just as for the reduced dynamics of the CH equation discussed in Lecture

9, the finite-dimensional invariant manifold of singular solutions (192) of

the modified CH2 system obeys canonical Hamiltonian equations. As for

the case of CH, this canonical reduction occurs because the singular so-

lutions (192) represent a cotangent-lift momentum map, this time for the

left action of the semidirect-product DiffsF on points on the real line.

Moreover, as in the passage from the CH equation in one dimension to

EPDiff in higher dimensions in Lecture 9, the singular solutions and their

momentum-map structure for the modified CH2 system also generalize to

arbitrary spatial dimensions. These more technical features of the modified

CH2 system are explained in [HTY09].
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Emergent singular solutions for a modified CH2

Figure 33: The particular case Qi = (1−α2
i∂

2
x), with αi = 0.3, 0.1. Left figure shows the

profile of ρ, while right shows the velocity u. Singular solutions emerge spontaneously
and their interaction is seen at late time. (Joint work with Lennon Ó Náraigh, Imperial
College London, and Cesare Tronci, EPFL)
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The 2-component CH equation and EP(DiffsF)

• In 1D, EPDiff recovers the dispersionless CH equation, which has re-

cently been extended to a system of two coupled 1+1 PDE’s (CH2)

d

dt

δL

δu
= −£u

δL

δu
+ ρ dρ ,

d

dt
ρ = −£u ρ

• Such an extension is again an integrable geodesic flow on a Lie group,

namely the semidirect product DiffsF (F denotes scalar functions).
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The 2-component CH equation and EP(DiffsF)

• In 1D, EPDiff recovers the dispersionless CH equation, which has re-

cently been extended to a system of two coupled 1+1 PDE’s (CH2)

d

dt

δL

δu
= −£u

δL

δu
+ ρ dρ ,

d

dt
ρ = −£u ρ

• Such an extension is again an integrable geodesic flow on a Lie group,

namely the semidirect product DiffsF (F denotes scalar functions).

• Does such a flow possess singular solutions? Can those be interpreted

in terms of momentum maps? What group actions are involved? One

approach toward answering these questions is via the study of geodesic

motion on semidirect-product Lie groups.
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Euler-Poincaré equations on DiffsF

• EP theory yields the reduced equations on X(Rn)sF(Rn)

d

dt

δL

δu
= −£u

δL

δu
+
δL

δλ
dλ ,

d

dt

δL

δλ
= −£u

δL

δλ

and geodesic motion is recovered for a purely quadratic Lagrangian

L(u, λ) =
1

2

∫
u Q1u dnx +

1

2

∫
λ Q2 λ dnx =

1

2
‖(u, λ)‖2

where Qi are positive-definite, symmetric operators defining a norm

for appropriate boundary conditions (say homogeneous or periodic).
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Euler-Poincaré equations on DiffsF

• EP theory yields the reduced equations on X(Rn)sF(Rn)

d

dt

δL

δu
= −£u

δL

δu
+
δL

δλ
dλ ,

d

dt

δL

δλ
= −£u

δL

δλ

and geodesic motion is recovered for a purely quadratic Lagrangian

L(u, λ) =
1

2

∫
u Q1u dnx +

1

2

∫
λ Q2 λ dnx =

1

2
‖(u, λ)‖2

where Qi are positive-definite, symmetric operators defining a norm

for appropriate boundary conditions (say homogeneous or periodic).

• In 1D, the particular choice Q1 = (1 − α2∂2
x) and Q2 = 1 yields the

integrable 2-component CH equations
(
L = 1/2 ‖u‖2

H1 + 1/2 ‖λ‖2
L2

)
.
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Euler-Poincaré equations on DiffsF

• EP theory yields the reduced equations on X(Rn)sF(Rn)

d

dt

δL

δu
= −£u

δL

δu
+
δL

δλ
dλ ,

d

dt

δL

δλ
= −£u

δL

δλ
and geodesic motion is recovered for a purely quadratic Lagrangian

L(u, λ) =
1

2

∫
u Q1u dnx +

1

2

∫
λ Q2 λ dnx =

1

2
‖(u, λ)‖2

where Qi are positive-definite, symmetric operators defining a norm

for appropriate boundary conditions (say homogeneous or periodic).

• In 1D, the particular choice Q1 = (1 − α2∂2
x) and Q2 = 1 yields the

integrable 2-component CH equations
(
L = 1/2 ‖u‖2

H1 + 1/2 ‖λ‖2
L2

)
.

• However, the choice for integrability (Q2 = 1) allows singular solu-

tions in momentum (peakons), but prevents singular solutions in

density.
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Emergent singular solutions for EP(DiffsF)

Figure 34: The particular case Qi = (1−α2
i∂

2
x), with αi = 0.3, 0.1. Left figure shows the

profile of λ, while right shows the velocity u. Singular solutions emerge spontaneously
and their interaction is seen at late time. (Joint work with Lennon Ó Náraigh, Imperial
College London, and Cesare Tronci, EPFL)
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Lie-Poisson formulation and singular solutions

• Legendre transform (m, ρ) = δL/δ(u, λ) yields the LP equations

∂tm + £u m = ρ∇λ , ρt + £u ρ = 0

with u = G1 ∗m, λ = G2 ∗ ρ and Gi is the Green’s function of Qi.
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Lie-Poisson formulation and singular solutions

• Legendre transform (m, ρ) = δL/δ(u, λ) yields the LP equations

∂tm + £u m = ρ∇λ , ρt + £u ρ = 0

with u = G1 ∗m, λ = G2 ∗ ρ and Gi is the Green’s function of Qi.

• Direct substitution proves the existence of singular solutions

(
m, ρ

)
=

N∑
i=1

∫ (
Pi(s, t), wi(s)

)
δ(x−Qi(s, t)) dks

Theorem 8 These singular solutions again represent a momentum map

J :
N

×
i=1

(
T ∗Emb(S,Rn) × Den(S)

)
→ X∗(Rn) s Den(Rn) .
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Proof strategy. Canonical Poisson structure on T ∗Emb× Den.

Proof: The underlying symmetry group is given by compositions of

diffeomorphisms with fiber translations(
Q (t), P (t), w (t)

)
=
(
ηt
(
Q (0)

)
, P (0) · T η−1

t

(
Q (0)

)
− d

(
wπ0

(
Q (0)

))
, w (0)

)
= τ− d(wπ0)◦ ηt

(
Q (0), P (0), w (0)

)
,

Corollary 3 The momentum map J is equivariant and thus is Poisson.

The following quadratic Hamiltonian on ×Ni=1 (T ∗Emb× Den)

HN =
1

2

N∑
i,j

∫∫
Pi(s, t) ·Pj(s′, t) G1

(
Qi(s, t)−Qj(s′, t)

)
dks dks′

+
1

2

N∑
i,j

∫∫
wi(s)wj(s

′)G2

(
Qi(s, t)−Qj(s′, t)

)
dks dks′ .

governs the collective dynamics, with fixed weights ẇi = 0.
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Collective Hamiltonian and Kaluza-Klein (KK)

• Remark 34 (Single-particle Hamiltonian) In 1D, one obtains the fol-

lowing single particle Hamiltonian HN=1

H1 =
1

2

(
P2 + w2

)
,

This is the KK Hamiltonian on T ∗(Rn × R) for free electric charge w.

Charge conservation follows from the cyclic variable θ inH1(Q,P, θ, w).
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Collective Hamiltonian and Kaluza-Klein (KK)

• Remark 34 (Single-particle Hamiltonian) In 1D, one obtains the fol-

lowing single particle Hamiltonian HN=1

H1 =
1

2

(
P2 + w2

)
,

This is the KK Hamiltonian on T ∗(Rn × R) for free electric charge w.

Charge conservation follows from the cyclic variable θ inH1(Q,P, θ, w).

• This suggests that the collective Hamiltonian HN could be treated as

a KK Hamiltonian on the configuration space

QKK =×N
i=1

(
Emb(S,Rn)×F(S)

)
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Collective Hamiltonian and Kaluza-Klein (KK)

• Remark 34 (Single-particle Hamiltonian) In 1D, one obtains the fol-

lowing single particle Hamiltonian HN=1

H1 =
1

2

(
P2 + w2

)
,

This is the KK Hamiltonian on T ∗(Rn × R) for free electric charge w.

Charge conservation follows from the cyclic variable θ inH1(Q,P, θ, w).

• This suggests that the collective Hamiltonian HN could be treated as

a KK Hamiltonian on the configuration space

QKK =×N
i=1

(
Emb(S,Rn)×F(S)

)
• The KK construction generates the right action momentum map

JS(Q,P, θ, w) = P · dQ + w dθ : T ∗QKK → X∗(S)

which is conserved, due to symmetry under Diff(S) reparameterization

(This is a version of the Kelvin circulation theorem.)
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Extension to Yang-Mills dynamics

• The KK formulation generalizes to non-Abelian gauge theories

• Such a description applies to certain fluid theories (e.g. liquid crystals)

involving extra degrees of freedom (gauge charge, e.g. orientation).
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Extension to Yang-Mills dynamics

• The KK formulation generalizes to non-Abelian gauge theories

• Such a description applies to certain fluid theories (e.g. liquid crystals)

involving extra degrees of freedom (gauge charge, e.g. orientation).

• The basic theory is “chromo-hydrodynamics”, modeling Yang-Mills

quark-gluon plasmas. (Gibbons, H, Kupershmidt, 1982)

• Chromo-hydrodynamics is Lie-Poisson on the dual of the Lie algebra

X(R3) s
(
g(R3)⊕ Den(R3)

)
where g(R3) :=

{
χ |χ : R3 → g

}
and g = TeG is the Lie algebra of G.
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Main message(s)

• EP(Diffsg)

Metamorphosis (Shape dynamics)

↓
Kaluza-Klein (KK) formulation

↓
Hamiltonian formulation (Lie-Poisson with cocycles)
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Main message(s)

• EP(Diffsg)

Metamorphosis (Shape dynamics)

↓
Kaluza-Klein (KK) formulation

↓
Hamiltonian formulation (Lie-Poisson with cocycles)

• Geometry of EP(DiffsF)

CH2 equation + H1 norm −→ Emergent singularities

Singular solution momap + Kaluza-Klein −→ Conservation laws
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Outlook

• Pairwise interactions of the singular solutions for EP(DiffsF) in 1D

have been studied in joint work with L. Ó Náraigh and C. Tronci.

• Interaction of singular solutions in higher dimensions needs more study.

• The interactions of gauge-charged singular solutions for EP(Diffsg)

deserve special attention. These will interact by orientation-dependent

collisions of particles carrying angular momentum.

• Can integrability be extended to gauge-charged geodesic solutions?

• EP applications to optimal control problems look especially promising.
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Exercise 29 As in the falling cat problem [Mon93], there is an interpre-

tation of the first equation in (175) as defining the zero-momentum con-

nection form for the horizontal subspace of the quotient space GsN/G.

Compute the curvature of the zero-momentum connection.

Exercise 30 Compute the metamorphosis equations (156) for the Euclidean

metric on the semidirect-product Lie group SE(3).

Exercise 31 Verify that the conditions ψxxt = ψtxx and dλ/dt = 0 to-

gether imply the CH2 system (185).

Exercise 32 Identify the Lie algebra on whose dual the Lie–Poisson Hamil-

tonian bracket for the CH2 system in (185) is defined in Exercise 26.

Exercise 33 Use Euler–Poincaré theory to derive the higher-dimensional

version of the modified CH2 system (191).
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Solutions to selected exercises

Solution 1 Solution to Exercise 26 One passes from Euler–Poincaré equa-

tions (167) on the Lagrangian side to Lie–Poisson Hamiltonian equations

via the Legendre transformation, see, e.g., [HMR98]. In our case, we start

with the reduced Lagrangian `(u, ν, n) in eqn (145) and perform a Legendre

transformation in the variables u and ν only, by writing the Hamiltonian,

h(µ, σ, n) =
〈
µ, u

〉
+
〈
σ, ν

〉
− `(u, ν, n) . (195)

Variation of the Hamiltonian yields

δh(µ, σ, n) =

〈
δh

δµ
, δµ

〉
+

〈
δh

δσ
, δσ

〉
+

〈
δh

δn
, δn

〉

=
〈
u, δµ

〉
+
〈
ν, δσ

〉
−
〈
δ`

δn
, δn

〉

+

〈
µ−

δ`

δu
, δu

〉
+

〈
σ −

δ`

δν
, δν

〉
. (196)
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The last two coefficients vanish under the Legendre transformation, so

µ =
δ`

δu
, σ =

δ`

δν
, (197)

which recovers the definitions of the momentum variables (µ, σ) in terms

of derivatives of the Lagrangian with respect to the velocities (u, ν). One

then computes the variational derivatives of the Hamiltonian h as

δh

δµ
= u ,

δh

δσ
= ν ,

δh

δn
= −

δ`

δn
. (198)

Consequently, the Euler–Poincaré equations (167) for metamorphosis in
the Eulerian description imply the following equations, for the Legendre-
transformed variables, (µ, σ, n), written as a matrix operation, symbolically
as

∂

∂t

 µ
σ
n

 = −

 ad∗2 µ σ � 2 −2 � n
2 ∗ σ 0 1
−£2 n −1 0

 δh/δµ
δh/δσ
δh/δn

 =: B

 δh/δµ
δh/δσ
δh/δn

 ,
(199)

with boxes 2 indicating where the substitutions occur. The Poisson bracket
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defined by the L2 skew-symmetric Hamiltonian matrix B is given by

{f, h} =
∫  δf/δµδf/δσ

δf/δn


T

B

 δh/δµδh/δσ
δh/δn

 dx . (200)

The pair (σ, n) satisfies canonical Poisson-bracket relations. The other

parts of the Poisson bracket are linear in the variables (µ, σ, n). This

linearity is the signature of a Lie–Poisson bracket. The Lie algebra actions

ensure that the Jacobi identity is satisfied. A similar Lie–Poisson bracket

was found for complex fluids in [Hol02].
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