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1 Introduction

M = Rn,Hn, Sn

M : an embedded hypersurface in M

We consider M as a wave front developping with time.



C

C
Ct

Ct

Ct:Parallel curve

C

C : sin θ
not parallel



Of
Of

Of

Mt

M = f−1(t0)

Parallel 



Sn−1 ⊂ En, Hn

1

En−1 ⊂ En

Hn−1 ⊂ Hn

× En−kS k−1

S k−1×Hn−k

Singularities occur in general.

When all parallel hypersurfaces are regular ?



Historical origin:
Geometric Optics (Laura, Somigliana, ‘18)

Φt(p) = {x ∈ R3 | the light from p arrives at x in time t}
M : a surface in R3.

Mt = {x ∈ R3 | the light from p ∈M arrives at x in time t}

Huygens principle: Mt = the envelope of Φt(p)

If the velocity is constant, Mt is parallel to M = M0.
⇒ {Mt} a family of parallel (local) hypersurfaces.



Q. When all Mt are regular?

Definition. f : M → R is an isoparametric function

⇔ (i) |∇f |2 = p(f) (ii) 4f = q(f)

where p, q are functions defined on the range of f in R.

A level set Mt = f−1(t) satisfies:
(i) ⇒ |∇f | is constant along Mt ⇒ Mt are mutually

parallel.
(ii)⇒4f is constant along Mt ⇒ each Mt has constant

mean curvature (CMC).



Definition.

A level set Mt of an isoparametric function is called
an isoparametric hypersurface if t is a regular value,

a focal submanifold (regular) if t is a critical value.

Remark. The regularity of each Mt follows from (i), if
p(f) is of class C2 (Q. M. Wang, ‘87).



Theorem 1. (É. Cartan ‘37) Let {Mt} be a family of
parallel hypersurfaces. Then

{Mt : isoparametric hypersurface}
⇔ All Mt are CMC
⇔ Some Mt has constant principal curvatures

Remark. This is remarkable because a local notion in-
duces a global notion.



Examples: {homogeneous h’surfaces in M = orbits of
certain subgroup of ISO(M)} ⊂∗ {isoparametric h’surfaces}

M Mn−1

Rn Rn−1 or Sn−1 Rk × Sn−k−1 –

Hn Heq, H0 or Sn−1 Hk
eq × Sn−k−1 –

Sn Sn−1 Sk × Sn−k−1 more

Heq : an equidistant h’s, H0 : a horosphere.

In the cases Rn and Hn, the equality holds in ∗. (Cartan).



In the case Sn, all homogeneous h’surfaces are classified
by Hsiang-Lawson (‘71), however, not all isoparametric
h’surfaces are classified yet.

Let M = Sn from now on.

Let g be the number of distinct principal curvatures of an
isoparametric hypersurface.



Cartan hypersurfaces: g = 3

Theorem 2. (Cartan ‘38) Isoparametric hypersurfaces
with g = 3 are given by tubes over the standard embed-
ding of the projective planes FP 2 in S4, S7, S13 and S25,
where F = R, C, H, C (Cayley numbers).

They are called the Cartan hypersurfaces, and denoted
by C3d

F , d = 1, 2, 4, 8. They are all homogeneous.

Remember CC ∼= SU(3)/T , where T is the maximal
torus of SU(3).



Theorem 3. (Münzner, ’81) An isoparametric function f

on Sn is given by the restriction of a homogeneous polynomial

F : Rn+1 → R of degree g, satisfying

Ω
|DF |2 = g2r2g (1)
4F = crg−2, r = |x| (2)

for a constant c = (m2 −m1)g
2/2, and

f = F |Sn : Sn → [−1, 1]

F is called a Cartan-Münzner Polynomial.



e.g. g = 1 : F (x) = xn+1

g = 2 : F (x) =
Pk+1

i=1 x2
i −

Pn−k+1
j=2 x2

k+j

Mt = f−1(t) : isoparametric hypersurface for t ∈ (−1, 1)

M± = f−1(±1) : focal submanifolds

• Mt sweeps out Sn = ∪t∈[−1,1]Mt, i.e., Sn has a singular

foliation.

• Moreover, Sn is decomposed into two disk bundles B+∪B−,

where B± → M± and B+ ∩B− = Mt.
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Theorem 4. (Münzner, ‘81)

(1) g ∈ {1, 2, 3, 4, 6},

(2) For principal curvature λ1 > · · · > λg, let mi be the

multiplicity of λi. Then mi = mi+2 follows.

g ≤ 3 ⇒ all homogeneous (Cartan)

Q. Are all isoparametric hypersurfaces in Sn homogeneous?



2 Non-homogeneous examples: g = 4

Theorem 5. (Ozeki-Takeuchi, ‘76) There exist

infinitely many non-homogeneous isoparametric hypersurfaces

with g = 4 in Sn.

Method: Construction of Cartan-Münzner polynomials of de-

gree 4 by using the representation of certain Clifford algebras.



Theorem 6. (Ferus-Karcher-Münzner, ‘81) O-T method

can be generalized into any Clifford algebras.

We call these hypersurfaces of OT-FKM type.

Remark. Some of OT-FKM type are homogeneous, and oth-

ers are non-homogeneous.

Theorem 7. (Cecil-Chi-Jensen, ‘07, Immervoll, ‘08)

Isoparametric hypersurfaces with g = 4 are either homoge-

neous or of OT-FKM type, except for the cases (m1, m2) =

(3, 4), (4, 5), (6, 9), (7, 8).

Open Problem. Classify the remaining cases.



3 Isoparametric h’surfaces : g = 6

Theorem 8. (Abresch, ‘83) When g = 6, mi = m ∈ {1, 2}.

For each case there is a homogeneous example:

m = 1: isotropy orbits N6
t of G2/SO(4) in S7.

m = 2: isotropy orbits M12
t of G2 ×G2/G2 in S13.



Geometric properties of these orbits:

Theorem 9. (M. ‘93) The homogeneous hy’surface N6 with

(g, m) = (6, 1) is given by π−1(CR) where CR is the Cartan

h’surface in S4, and π : S7 → S4 is the Hopf map. Thus

N6 ∼= CR × S3.

Theorem 10. (M. ‘08) The homogeneous h’surface M12

with (g, m) = (6, 2) has a Kähler fibration π : M → S6 with

fiber the Cartan h’surface CC = SU(3)/T 2.



Classification in the case g = 6:

Theorem 11. (Dorfmeister-Neher, ‘85, M. ‘09) Isopara-

metric h’s with (g, m) = (6, 1) are homogeneous, i.e., the

SO(4) orbits.

Theorem 12. (M. ‘09) The isoparametric h’s with (g, m) =

(6, 2) are homgeneous, i.e., the G2 orbits.

Key Lemma. (M, ‘93, ‘98) Isoparametric h’s with g = 6 are

homogeneous ⇔ the shape operators of a focal submfd have

the kernel indep. of the normal directions.



Classification of isoparametric h’surfaces in Sn

g 1 2 3 4∗ 6

M Sn−1 Sk × Sn−k−1 CF
homogeneous or

of OT-FKM type
N6, M12

∗ some exceptions.



4 Application 1: Special metrics

Theorem 13. (N.Koiso, ‘81) Every real analytic Rieman-

nian manifold M with constant scalar curvature can be em-

bedded into certain Einstein manifold M as a totally geodesic

hypersurface.

Basically, M is given by M × R with an Einstein metric

obtained by solving an ODE. Here, M is a h’s of M .

• 1-parameter family of h’s is a nice tool to find certain metrics.



Construction of special metrics

• Special metrics mean metrics with special holonomy, Ricci

flat (Kähler) metrics, etc.

• Such metrics are often constructed on a vector bundle over

a Riemannian manifold with nice properties (Einstein etc).

Examples:

◦ Bryant-Salamon’s G2-metrics and Spin(7)-metrics.

◦ Lü-Page-Pope metrics



Idea: π : Y → M : a vector bundle

⇒ Y = ∪r≥0Xr where Xr is the sphere bundle Xr → M

consisting of fiber vectors of constant length r.

• Xr is a hypersurface of Y for r > 0.

If there is a nice metric gr on each Xr, we may obtain a nice

metric allover Y (solving certain ODE w.r.t r).



Special holonomy: (by Berger, ‘55)

Hol(g) U(n) Sp(n) G2 Spin(7)

structure Calabi-Yau Hyperkähler G2 Spin(7)

M M2n M4n M7 M8

(the first two: complex geometry, well investigated)

the last two : firstly, metrics are constructed by Bryant (‘87),

and complete metrics by Bryant-Salamon (‘89), both are in an

explicit way.

⇒ important in physics, e.g. treated in M-theory by Atiyah-

Witten.



Bryant-Salamon’s G2-metric

Y 7 = Λ2
−(M) → M : the ASD bundle of M = S4 or CP 2.

Theorem 14. (BS, ‘89) For a constant λ > 0, a metric on

Y 7

gλ = (λ + r2)1/2gb +
1

(λ + r2)1/2
gf

is a complete Ricci flat metric with Hol(g) = G2, where gb and

gf are metrics of the base and the fibers, respectively.

A complete G2 metric is also constructed on the spin bundle

Y 7 = S over S3.



Let
X6

r = {fiber vectors of length r} ⊂ Y 7,

then

Xr
∼= CP 3 for Y 7 = Λ2

−(S4)

SU(3)/T 2 for Y 7 = Λ2
−(CP 2)

S3 × S3 for Y 7 = S

Remark. BS metrics are homogeneous on Xr, and hence a

cohomogeneity one metric on Y 7 (S. Salamon’s talk in the

Winter School 2002.)



Relation with isoparametric h’surfaces

S3 × S3 and SU(3)/T 2 appear as isoparametric h’s in S7.

However, the metric used by Bryant-Salamon is completely

different from that of the isoprametric hypersurfaces.

In the case SU(3)/T 2, the former is non-Kähler Einstein

metric, while the latter is Kähler non-Einstein.

We have a topological correspondence between Y 7 and a part

of S7.



The topology of Λ2
−(CP 2)

Recall:

Y = Λ2
−(CP 2) = ∪r≥0Xr, Xr

∼= CC, r > 0.

On the other hand, the Cartan h’surfaces CC ∼= Mt and

two focal submanifolds M± ∼= CP 2 give a singular foliation

S7 = ∪t∈[−1,1]Mt by a 1- parameter family, via the theory of

isoparametric h’surfaces.



Thus we obtain

Λ2
−(CP 2) ∼= ∪r≥0Xr

∼= ∪t∈[−1,1)Mt
∼= S7 \ CP 2.

because

X0
∼= CP 2 = M− and S∞ ∼= CP 2 = M+,

by identifying Xr with Mt where

t =
r − 1
r + 1

, r ≥ 0



In the case of the spin bundle S over S3, Xr = S3×S3, which

can be identified with the isoparametric family {Mt} in S7,

and we obtain

Theorem 15. [M, ‘05]

S ∼= S7 \ S3

Λ2
−(CP 2) ∼= S7 \ CP 2



Recall open Calabi-Yau problem

M : compact Kähler mfd with Ricci> 0,

D : a suitable divisor

Bando-Kobayashi [BK], Tian-Yau [TY] obtain a complete

Ricci flat Kähler Einstein metric on M \ D.



Real version:

Construct a complete Ricci-flat, non-flat metric on a mani-

fold M = M \D, where M is a compact Riemannian manifold

with positive Ricci curvature, and D is some submanifold of

M .

In particular,

For each isoparametric family {Mt} in Sn, does there exist a

complete Ricci flat, non-flat metric on Sn \ M±?



Theorem 16. [Lü-Page-Pope, 2004] There exists a com-

plete Ricci flat metric on Sm × Rn+2 for any n, m ≥ 1 (gener-

alization of Taub-NUT metric).

Since Sm × Rn+2 = ∪r≥0S
m × Sn+1(r), and Sm × Sn+1(r)

is identified with an isoparametric h’surface in Sm+n+1, where

Sm = M− and Sn+1 = M+, we obtain

Corollary 17. On Sn+m+1 \ Sn+1, for any n, m ≥ 1, there

exists a complete Ricci flat metric.



5 Application 2: Calibrated geometry

(M, g) : Riemannian manifold

ϕ ∈ Ωp : a closed p-form is a calibration ⇔ for any p-plane

T in TM ,

ϕ(T ) ≤ 1

N : a p-dimensional submanifold of M is calibrated

⇔ ϕ(TxN) = 1 at any x ∈ N

(⇒ N is volume minimizing in the same homology class)



Example

(1) Complex submanifolds N2p of a Kähler manifold M ,

ϕ = ωp/(p!), ω : Kähler form of M

(2) Special Lagrangian submanifolds Np of a Calabi-Yau

manifold M (⇔ Ricci-flat Kähler),

ϕ = <(eiθΩ), Ω : the holomorphic (n, 0) volume form on

M



Special Lagrangian submanifolds:

Cn+1 has a calibration: ϕ = <(eiθdz0 ∧ · · · ∧ dzn)

Def. A submanifold N of a Riemannian mfd is austere

⇔ any shape operators of N have eigenvalues in pairs {±λj},
and the multiplicities of ±λj coincide.

N : austere in Sn ⇒ the cone over N : austere in Rn+1

Example. (i) minimal surface = austere surface.

(ii) a complex submanifold of a Kähler manifold



Theorem 18. [Ishikawa-Kimura-M. 2002]

(i) Minimal isoparametric h’surfaces with principal curva-

tures having the same multiplicity are austere, namely,

M1 = Sn−1, M2 = S(n−1)/2 × S(n−1)/2 (n : odd)
M3 = CF, (m = 1, 2, 4, 8), M4m

4 , M2m
6 , (m = 1, 2)

where Mg denotes an isoparametric h’surface with g principal

curvatures.

(ii) The focal submanifolds of any isoparametric hypersur-

faces are austere.

Remark. (i) : all homogeneous. (ii) includes both homoge-

neous and non-homogeneous ones.



Theorem 19. [Harvey-Lawson, 1982] The conormal bun-

dle of the cone of an austere submanifolds in Sn is a special

Lagrangian submanifold of Cn+1 = T ∗Rn+1.

Theorem 20.[Kariggianis and Min-Oo, 2004] The conor-

mal bundle of austere submanifolds in Sn is a special La-

grangian submanifold of T ∗Sn with the Stenzel metric.

Stenzel metric : a generalization of Eguchi-Hanson metric

on T ∗S2 (Ricci flat Kähler).



Corollary 21. [IKM]

(i) The conormal bundle of the cone over submanifolds given

in Theorem 18 are special Lagrangian submanifolds of Cn+1.

(ii) The conormal bundle of the submanifolds given in Theo-

rem 18 are special Lagrangian submanifolds of T ∗Sn with the

Stenzel metric.



6 Brezis’ question
Q. (Brezis, 1999) Let u : RN → RN be a solution of the

Ginzburg-Landau system:

4u = u(|u|2 − 1) N ≥ 3,

with |u(x)| → 1 as |x| →∞ . Assume deg(u,∞) = ±1. Does u have

the form
u(x) =

x

|x|
h(|x|),

where h : R+ → R+ is a smooth function, such that h(0) = 0 and

h(∞) = 1?



Counterexamples to this question were constructed by Fa-

rina (2004) and Ge-Xie (2009), by using Cartan-Münzner poly-

nomials.

In fact, consider the Cartan-Münzner polynomial

F : RN → R and put Φ =
∇F
g

: RN → RN

When m1 = m2, F satisfies

(i) |DF |2 = g2|x|2g−2, (ii) 4F = 0

Then putting

u(x) = Φ

µ
x
|x|

∂
h(|x|)



and solving h so that u(x) be a solution to the Ginzburg-

Landau system, we obtain conterexamples to Brezis’ question

if (g, m) = (6, 1) : Farina, 2004, and

(g, m) = (4, 1) : Ge-Xie, 2009

Remark. No other Cartan-Münzner polynomials give coun-

terexamples (Ge-Xie, because of the degree condition).



7 Other directions

I. Hamiltonian stability of Lagrangian submfds:

Theorem 22. [B.Palmer] The image of the Gauss map

G : M → Qn−1 of an isoparametric hypersurface M in Sn,

defined by G(p) = p ∧ ξp where ξp is the unit normal to M at

p, is a Lagrangian submanifold of the complex hyperquadric

Qn−1 ∼=Gr+2 (n + 1, R) (1997).

• Hamiltonian stability of G(M) is studied by M. Hui and

Y. Ohnita (2009) in the homogeneous cases.



II. Moment maps

Theorem 23. [S. Fujii, ‘09] For homogeneous hypersurfaces

with g = 4 obtained by the isotropy action of a Hermitian

symmetric space of classical type, the corresponding Cartan-

Münzner polynomial is given by a square norm of the moment

map of this action.



III. Relation with integrable systems:

Theorem 24. [Ferapontov, 95] Homogeneous hypersur-

faces in Sn correspond to completely integrable n-wave sys-

tems.

Related works: Dubrovin, Novikov, Tsarëv, etc.

Q. How we can say about the non-homogeneous OT-FKM

type?



Concluding remarks

Hypersurface geometry is important in itself, and also in re-

lation with various fields, as a tool constructing special metrics,

special Lagrangian submanifolds, counterexamples of Brezis’

question, etc.

In particular, isoparametric h’surfaces are interesting, as

they include both homogeneous and non-homogeneous cases.

One of the most interesting problems is to investigate non-

homogeneous OT-FKM type hypersurfaces from a view point

of group actions.



Thank you for your attention.
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