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1 Introduction

M =R" H", S"
M: an embedded hypersurface in M

We consider M as a wave front developping with time.
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Singularities occur in general.

When all parallel hypersurfaces are regular ?

En—l c E™
Hn—l c H™

S*=lc Er, H"



Historical origin:
Geometric Optics (Laura, Somigliana, ‘18)

®;(p) = {z € R? | the light from p arrives at z in time ¢}
M: a surface in R3.

M; = {x € R3 | the light from p € M arrives at x in time ¢}
Huygens principle: M; = the envelope of ®;(p)

If the velocity is constant, M; is parallel to M = Mj.
= {M;} a family of parallel (local) hypersurfaces.




Q. When all M; are regular?

Definition. f: M — R is an isoparametric function

< @) VP =p(f) () Af=q(f)

where p, g are functions defined on the range of f in R.

A level set M; = f~1(t) satisfies:

(i) = |V f| is constant along M; = M; are mutually
parallel.

(ii) = A f is constant along M; = each M, has constant

mean curvature (CMC).



Definition.

A level set M; of an isoparametric function is called

an isoparametric hypersurface if ¢t is a regular value,

a focal submanifold (regular) if ¢ is a critical value.

Remark. The regularity of each M; follows from (i), if
p(f) is of class C* (Q. M. Wang, ‘87).



Theorem 1. (E. Cartan ‘37) Let {M,} be a family of
parallel hypersurfaces. Then
{ M, : isoparametric hypersurface}
& All M, are CMC

< Some M; has constant principal curvatures

Remark. This is remarkable because a local notion in-

duces a global notion.



Examples: {homogeneous h’surfaces in M = orbits of

certain subgroup of ISO(M)} C* {isoparametric h’surfaces}

M Mn—l
R" Rn—l or Sn—l Rk > Sn—k—l .

H™ || Heq, Hy or S™~ | HE x Sn=F=1 | —
ST sl Sk x §n=k=1 | more

H., : an equidistant h’s;,  Hp : a horosphere.

In the cases R™ and H", the equality holds in *. (Cartan).



In the case 5™, all homogeneous h’surfaces are classified
by Hsiang-Lawson (‘71), however, not all isoparametric

h’surfaces are classified yet.
Let M = S™ from now on.

Let g be the number of distinct principal curvatures of an

isoparametric hypersurface.



Cartan hypersurfaces: g = 3

Theorem 2. (Cartan ‘38) Isoparametric hypersurfaces
with ¢ = 3 are given by tubes over the standard embed-
ding of the projective planes FP? in S4, 57, S!3 and S?°,
where F = R, C, H, C (Cayley numbers).

They are called the Cartan hypersurfaces, and denoted

by ng, d=1,2,4,8. They are all homogeneous.

Remember C¢ = SU(3)/T, where T is the maximal
torus of SU(3).



Theorem 3. (Miinzner, ’81) An isoparametric function f
on S™ is given by the restriction of a homogeneous polynomial

F :R™"™ — R of degree g, satisfying

IDF|* = g°r* (1)
AF =cri=2, r=|x| (2)

for a constant ¢ = (m2 — m1)g*/2, and

f=F|gn:8" —[—-1,1]

F' is called a Cartan-Miinzner Polynomial.




M; = f~1(t) : isoparametric hypersurface for ¢t € (—1,1)
My = f~(£1) : focal submanifolds
o M; sweeps out S" = Ue(—1,11M¢, ie.,, S has a singular
foliation.

e Moreover, S" is decomposed into two disk bundles By UB_,
where B4 — M4 and By N B_ = M;,.
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Theorem 4. (Miinzner, ‘81)
(1) g €41,2,3,4,6},

(2) For principal curvature Ay > --- > A4, let m; be the
multiplicity of A\;. Then m; = m;12 follows.
g < 3 = all homogeneous (Cartan)

Q. Are all isoparametric hypersurfaces in S" homogeneous?



2 Non-homogeneous examples: g = 4

Theorem 5. (Ozeki-Takeuchi, ¢76) There exist
infinitely many non-homogeneous isoparametric hypersurfaces
with g =4 in S".

Method: Construction of Cartan-Miinzner polynomials of de-

gree 4 by using the representation of certain Clifford algebras.



Theorem 6. (Ferus-Karcher-Miinzner, ‘81) O-T method

can be generalized into any Clifford algebras.

We call these hypersurfaces of OT-FKM type.

Remark. Some of OT-FKM type are homogeneous, and oth-

ers are non-homogeneous.

Theorem 7. (Cecil-Chi-Jensen, ‘07, Immervoll, ‘08)
Isoparametric hypersurfaces with ¢ = 4 are either homoge-

neous or of OT-FKM type, except for the cases (mi,ms) =
(3,4), (4,5), (6,9), (7,8).

Open Problem. Classify the remaining cases.



3 Isoparametric h'surfaces : g = 6

Theorem 8. (Abresch, ‘83) When g =6, m; = m € {1,2}.
For each case there is a homogeneous example:
m = 1: isotropy orbits N of G2/SO(4) in S”.

m = 2: isotropy orbits M;* of G2 x G2/G2 in S'°.



(Geometric properties of these orbits:

Theorem 9. (M. ‘93) The homogeneous hy’surface N° with
(g,m) = (6,1) is given by 7~ '(Cr) where Cr is the Cartan
h’surface in S*, and 7 : S* — S* is the Hopf map. Thus
NO o~ Cr X S3.

Theorem 10. (M. ‘08) The homogeneous h’surface M'?
with (g, m) = (6,2) has a Kahler fibration 7 : M — S°® with
fiber the Cartan h’surface Cc = SU(3)/T>.



Classification in the case g = 6:

Theorem 11. (Dorfmeister-Neher, ‘85, M. ‘09) Isopara-
metric h’s with (g, m) = (6,1) are homogeneous, i.e., the
SO(4) orbits.

Theorem 12. (M. ‘09) The isoparametric h’s with (g, m) =

(6,2) are homgeneous, i.e., the G2 orbits.

Key Lemma. (M, ‘93, ‘98) Isoparametric h’s with g = 6 are
homogeneous < the shape operators of a focal submfd have

the kernel indep. of the normal directions.



Classification of isoparametric h’surfaces in S"

4*

homogeneous or

of OT-FKM type

N6, Ml2

* some exceptions.




4 Application 1: Special metrics

Theorem 13. (N.Koiso, ‘81) Every real analytic Rieman-
nian manifold M with constant scalar curvature can be em-
bedded into certain Einstein manifold M as a totally geodesic

hypersurface.

Basically, M is given by M x R with an Einstein metric
obtained by solving an ODE. Here, M is a h’s of M.

e 1-parameter family of h’s is a nice tool to find certain metrics.



Construction of special metrics

e Special metrics mean metrics with special holonomy, Ricci
flat (K&hler) metrics, etc.

e Such metrics are often constructed on a vector bundle over

a Riemannian manifold with nice properties (Einstein etc).

Examples:
o Bryant-Salamon’s G2-metrics and Spin(7)-metrics.

o Lu-Page-Pope metrics



Idea: m:Y — M : a vector bundle

= Y = U,>0X, where X, is the sphere bundle X, — M
consisting of fiber vectors of constant length 7.
e X, is a hypersurface of Y for r > 0.

If there is a nice metric g, on each X,, we may obtain a nice

metric allover Y (solving certain ODE w.r.t r).



Special holonomy: (by Berger, ‘55)

Hol(g) U(n) Sp(n) Go | Spin(7)
structure || Calabi-Yau | Hyperkahler | G2 | Spin(7)
M M2n M4n M7 M8

(the first two: complex geometry, well investigated)

the last two : firstly, metrics are constructed by Bryant (‘87),
and complete metrics by Bryant-Salamon (‘89), both are in an
explicit way.

= important in physics, e.g. treated in M-theory by Atiyah-
Witten.



Bryant-Salamon’s Gs-metric
Y" =A% (M) — M : the ASD bundle of M = S* or CP?.

Theorem 14. (BS, ‘89) For a constant A > 0, a metric on
Y7
1

. 271/2
g =A+77)""gp + ()\_|_r2)1/29f

is a complete Ricci flat metric with Hol(g) = G2, where g, and

gs are metrics of the base and the fibers, respectively.

A complete G2 metric is also constructed on the spin bundle
Y" =S over S°.



Let
X;. = {fiber vectors of length r} C Y,

then
X, CP? for YY" = A% (S%)

SU(3)/T* for Y = A% (CP?)

S3 % §° forY' =S8

Remark. BS metrics are homogeneous on X,, and hence a

cohomogeneity one metric on Y’ (S. Salamon’s talk in the
Winter School 2002.)



Relation with isoparametric h’surfaces
S3 x §% and SU(3)/T? appear as isoparametric h’s in S”.

However, the metric used by Bryant-Salamon is completely
different from that of the isoprametric hypersurfaces.
In the case SU(3)/T?, the former is non-Kihler Einstein

metric, while the latter is Kahler non-Einstein.

We have a topological correspondence between Y7 and a part

of S°.



The topology of A% (CP?)

Recall:
Y = A2 (CP?) =Up>0X,, X,=Cc,7r>0.

On the other hand, the Cartan h’surfaces C¢c = M; and
two focal submanifolds M4 = CP? give a singular foliation
ST = Ute—1,11M: by a 1- parameter family, via the theory of

isoparametric h’surfaces.



Thus we obtain
A2 (CP?) 2 U,>0X,r 2 Uge 1.1y My &2 ST\ CP?.
because

Xo 2 CP? = M_ and So. =2 CP? = M,

by identifying X, with M; where



In the case of the spin bundle S over S°, X, = S x S°, which
can be identified with the isoparametric family {M;} in S”,

and we obtain

Theorem 15. [M, ‘05]

s
10

ST\ §®

10

A% (CP?) S”\ CP?




Recall open Calabi-Yau problem

M : compact Kahler mfd with Ricci> 0,

D : a suitable divisor

Bando-Kobayashi [BK], Tian-Yau [TY]| obtain a complete
Ricci flat Kahler Einstein metric on M \ D.



Real version:

Construct a complete Ricci-flat, non-flat metric on a mani-
fold M = M \ D, where M is a compact Riemannian manifold

with positive Ricci curvature, and D is some submanifold of
M.

In particular,

For each isoparametric family {M;} in S™, does there exist a

complete Ricci flat, non-flat metric on S™ \ M7



Theorem 16. [Lii-Page-Pope, 2004] There exists a com-
plete Ricci flat metric on S™ x R™"? for any n, m > 1 (gener-
alization of Taub-NUT metric).

Since S x R™? = U,>08™ x 8" !(r), and S™ x S™*!(r)
is identified with an isoparametric h’surface in S™"" !, where
S™ = M_ and S™*t' = M., we obtain

Corollary 17. On S™™T1\ §"*! for any n,m > 1, there

exists a complete Ricci flat metric.



5 Application 2: Calibrated geometry

(M, g) : Riemannian manifold

© € QP : a closed p-form is a calibration < for any p-plane
T in TM,

p(T) <1

N : a p-dimensional submanifold of M is calibrated
S (TyN)=1atany z € N

(= N is volume minimizing in the same homology class)



Example
(1) Complex submanifolds N°? of a Kihler manifold M,
¢ =wl/(p!), w : Kahler form of M

(2) Special Lagrangian submanifolds N? of a Calabi-Yau
manifold M (< Ricci-flat Kahler),

0 = RN(Q), Q: the holomorphic (n,0) volume form on
M



Special Lagrangian submanifolds:
C™*! has a calibration: ¢ = R(e“®dzo A -+ A dzy,)

Def. A submanifold N of a Riemannian mfd is austere
< any shape operators of IV have eigenvalues in pairs {4\, },

and the multiplicities of £\, coincide.
N : austere in S™ = the cone over N : austere in R"!

Example. (i) minimal surface = austere surface.

(ii) a complex submanifold of a Kéhler manifold



Theorem 18. [Ishikawa-Kimura-M. 2002]
(i) Minimal isoparametric h’surfaces with principal curva-

tures having the same multiplicity are austere, namely,

My =8""1, M,=80""1/2ygn=1/2 (. odd)
M3 =Cr, (m=1,2,4,8), Mi™, M™, (m=1,2)

where M, denotes an isoparametric h’surface with g principal
curvatures.
(ii) The focal submanifolds of any isoparametric hypersur-

faces are austere.

Remark. (i) : all homogeneous. (ii) includes both homoge-

neous and non-homogeneous ones.



Theorem 19. [Harvey-Lawson, 1982] The conormal bun-

dle of the cone of an austere submanifolds in S™ is a special
Lagrangian submanifold of C"*+ = T*R" !,

Theorem 20.[Kariggianis and Min-Oo, 2004] The conor-
mal bundle of austere submanifolds in S" is a special La-

grangian submanifold of T™S™ with the Stenzel metric.

Stenzel metric : a generalization of Eguchi-Hanson metric
on T*S? (Ricci flat Kahler).



Corollary 21. [IKM]

(i) The conormal bundle of the cone over submanifolds given
in Theorem 18 are special Lagrangian submanifolds of C™**.
(ii) The conormal bundle of the submanifolds given in Theo-

rem 18 are special Lagrangian submanifolds of 775" with the

Stenzel metric.



6 Brezis' question

Q. (Brezis, 1999) Let u : RY — RY be a solution of the

Ginzburg-Landau system:
Au=u(|u*—1) N >3,

with |u(z)| — 1 as |z| —oo . Assume deg(u,o0) = £1. Does u have

the form .
u(z) = —h(lz]),
||
where h : Ry — Ry is a smooth function, such that h(0) = 0 and

h(oco) =17



Counterexamples to this question were constructed by Fa-
rina (2004) and Ge-Xie (2009), by using Cartan-Miinzner poly-

nomials.

In fact, consider the Cartan-Minzner polynomial

F:RY R and put o= YE RN RV

g

When mi1 = mao, F satisfies
() [DF* = g*|e[**", (ii) AF =0

Then putting



and solving h so that u(x) be a solution to the Ginzburg-
Landau system, we obtain conterexamples to Brezis’ question
if (9, m) = (6,1) : Farina, 2004, and

(g,m) = (4,1) : Ge-Xie, 2009

Remark. No other Cartan-Miinzner polynomials give coun-

terexamples (Ge-Xie, because of the degree condition).



7 Other directions

I. Hamiltonian stability of Lagrangian submfds:

Theorem 22. [B.Palmer]| The image of the Gauss map
G : M — Q" ! of an isoparametric hypersurface M in S™,
defined by G(p) = p A &, where &, is the unit normal to M at
p, is a Lagrangian submanifold of the complex hyperquadric
Q"' =Grs (n+1,R) (1997).

e Hamiltonian stability of G(M) is studied by M. Hui and
Y. Ohnita (2009) in the homogeneous cases.



II. Moment maps

Theorem 23. [S. Fujii, ‘09] For homogeneous hypersurfaces
with g = 4 obtained by the isotropy action of a Hermitian
symmetric space of classical type, the corresponding Cartan-
Miinzner polynomial is given by a square norm of the moment

map of this action.



II1. Relation with integrable systems:

Theorem 24. [Ferapontov, 95] Homogeneous hypersur-
faces in S™ correspond to completely integrable n-wave sys-

tems.
Related works: Dubrovin, Novikov, Tsarev, etc.

Q. How we can say about the non-homogeneous OT-FKM
type?



Concluding remarks

Hypersurface geometry is important in itself, and also in re-
lation with various fields, as a tool constructing special metrics,
special Lagrangian submanifolds, counterexamples of Brezis’
question, etc.

In particular, isoparametric h’surfaces are interesting, as
they include both homogeneous and non-homogeneous cases.

One of the most interesting problems is to investigate non-
homogeneous OT-FKM type hypersurfaces from a view point

of group actions.



Thank you for your attention.
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