Hypersurface Geometry

-with some applications-

Reiko MIYAOKA (Tohoku University)

UK-Japan Winter School
Integrable Systems and Symmetries

(University of Manchester/England, 7-10 January 2010)

1 Introduction

$$\overline{M} = \mathbb{R}^n, H^n, S^n$$

M: an embedded hypersurface in \overline{M}

We consider M as a wave front developping with time.

Singularities occur in general.

When all parallel hypersurfaces are regular ?

$$S^{n-1}\subset E^n, H^n$$

Historical origin:

Geometric Optics (Laura, Somigliana, '18)

 $\Phi_t(p) = \{x \in \mathbb{R}^3 \mid \text{the light from } p \text{ arrives at } x \text{ in time } t\}$ M: a surface in \mathbb{R}^3 .

 $M_t = \{x \in \mathbb{R}^3 \mid \text{the light from } p \in M \text{ arrives at } x \text{ in time } t\}$

Huygens principle: M_t = the envelope of $\Phi_t(p)$

If the velocity is constant, M_t is parallel to $M = M_0$.

 $\Rightarrow \{M_t\}$ a family of parallel (local) hypersurfaces.

Q. When all M_t are regular?

Definition. $f: \overline{M} \to \mathbb{R}$ is an isoparametric function

$$\Leftrightarrow$$
 (i) $|\nabla f|^2 = p(f)$ (ii) $\triangle f = q(f)$

where p, q are functions defined on the range of f in \mathbb{R} .

A level set $M_t = f^{-1}(t)$ satisfies:

- (i) $\Rightarrow |\nabla f|$ is constant along $M_t \Rightarrow M_t$ are mutually parallel.
- (ii) $\Rightarrow \triangle f$ is constant along $M_t \Rightarrow \text{each } M_t$ has constant mean curvature (CMC).

Definition.

A level set M_t of an isoparametric function is called an isoparametric hypersurface if t is a regular value, a focal submanifold (regular) if t is a critical value.

Remark. The regularity of each M_t follows from (i), if p(f) is of class C^2 (Q. M. Wang, '87).

Theorem 1. (É. Cartan '37) Let $\{M_t\}$ be a family of parallel hypersurfaces. Then

 $\{M_t: isoparametric hypersurface\}$

 \Leftrightarrow All M_t are CMC

 \Leftrightarrow Some M_t has constant principal curvatures

Remark. This is remarkable because a local notion induces a global notion.

Examples: {homogeneous h'surfaces in \overline{M} = orbits of certain subgroup of ISO(\overline{M})} \subset * {isoparametric h'surfaces}

$oxed{\overline{M}}$	M^{n-1}			
\mathbb{R}^n	\mathbb{R}^{n-1} or S^{n-1}	$\mathbb{R}^k \times S^{n-k-1}$	_	
H^n	$H_{eq}, H_0 \text{ or } S^{n-1}$	$H_{eq}^k \times S^{n-k-1}$	_	
S^n	S^{n-1}	$S^k \times S^{n-k-1}$	more	

 H_{eq} : an equidistant h's, H_0 : a horosphere.

In the cases \mathbb{R}^n and H^n , the equality holds in *. (Cartan).

In the case S^n , all homogeneous h'surfaces are classified by Hsiang-Lawson ('71), however, not all isoparametric h'surfaces are classified yet.

Let $\overline{M} = S^n$ from now on.

Let g be the number of distinct principal curvatures of an isoparametric hypersurface.

Cartan hypersurfaces: g = 3

Theorem 2. (Cartan '38) Isoparametric hypersurfaces with g=3 are given by tubes over the standard embedding of the projective planes $\mathbb{F}P^2$ in S^4, S^7, S^{13} and S^{25} , where $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathcal{C}$ (Cayley numbers).

They are called the <u>Cartan hypersurfaces</u>, and denoted by $C_{\mathbb{F}}^{3d}$, d=1,2,4,8. They are all homogeneous.

Remember $C_{\mathbb{C}} \cong SU(3)/T$, where T is the maximal torus of SU(3).

Theorem 3. (Münzner, '81) An isoparametric function f on S^n is given by the restriction of a homogeneous polynomial $F: \mathbb{R}^{n+1} \to \mathbb{R}$ of degree g, satisfying

$$\begin{cases} |DF|^2 = g^2 r^{2g} & (1) \\ \triangle F = cr^{g-2}, \quad r = |x| & (2) \end{cases}$$

for a constant $c = (m_2 - m_1)g^2/2$, and

$$f = F|_{S^n} : S^n \to [-1, 1]$$

F is called a Cartan-Münzner Polynomial.

e.g.
$$g = 1 : F(x) = x_{n+1}$$

 $g = 2 : F(x) = \sum_{i=1}^{k+1} x_i^2 - \sum_{j=2}^{n-k+1} x_{k+j}^2$

$$M_t = f^{-1}(t)$$
: isoparametric hypersurface for $t \in (-1, 1)$
 $M_{\pm} = f^{-1}(\pm 1)$: focal submanifolds

- M_t sweeps out $S^n = \bigcup_{t \in [-1,1]} M_t$, i.e., S^n has a singular foliation.
- Moreover, S^n is decomposed into two disk bundles $B_+ \cup B_-$, where $B_{\pm} \to M_{\pm}$ and $B_+ \cap B_- = M_t$.

Theorem 4. (Münzner, '81)

- $(1) g \in \{1, 2, 3, 4, 6\},\$
- (2) For principal curvature $\lambda_1 > \cdots > \lambda_g$, let m_i be the multiplicity of λ_i . Then $m_i = m_{i+2}$ follows.

 $g \leq 3 \Rightarrow \text{all homogeneous (Cartan)}$

Q. Are all isoparametric hypersurfaces in S^n homogeneous?

2 Non-homogeneous examples: g = 4

Theorem 5. (Ozeki-Takeuchi, '76) There exist infinitely many non-homogeneous isoparametric hypersurfaces with g = 4 in S^n .

Method: Construction of Cartan-Münzner polynomials of degree 4 by using the representation of certain Clifford algebras.

Theorem 6. (Ferus-Karcher-Münzner, '81) O-T method can be generalized into any Clifford algebras.

We call these hypersurfaces of OT-FKM type.

Remark. Some of OT-FKM type are homogeneous, and others are non-homogeneous.

Theorem 7. (Cecil-Chi-Jensen, '07, Immervoll, '08) Isoparametric hypersurfaces with g = 4 are either homogeneous or of OT-FKM type, except for the cases $(m_1, m_2) = (3, 4), (4, 5), (6, 9), (7, 8)$.

Open Problem. Classify the remaining cases.

3 Isoparametric h'surfaces : g = 6

Theorem 8. (Abresch, '83) When g = 6, $m_i = m \in \{1, 2\}$.

For each case there is a homogeneous example:

m=1: isotropy orbits N_t^6 of $G_2/SO(4)$ in S^7 .

m=2: isotropy orbits M_t^{12} of $G_2\times G_2/G_2$ in S^{13} .

Geometric properties of these orbits:

Theorem 9. (M. '93) The homogeneous hy'surface N^6 with (g,m)=(6,1) is given by $\pi^{-1}(C_{\mathbb{R}})$ where $C_{\mathbb{R}}$ is the Cartan h'surface in S^4 , and $\pi:S^7\to S^4$ is the Hopf map. Thus $N^6\cong C_{\mathbb{R}}\times S^3$.

Theorem 10. (M. '08) The homogeneous h'surface M^{12} with (g, m) = (6, 2) has a Kähler fibration $\pi : M \to S^6$ with fiber the Cartan h'surface $C_{\mathbb{C}} = SU(3)/T^2$.

Classification in the case g = 6:

Theorem 11. (Dorfmeister-Neher, '85, M. '09) Isoparametric h's with (g, m) = (6, 1) are homogeneous, i.e., the SO(4) orbits.

Theorem 12. (M. '09) The isoparametric h's with (g, m) = (6, 2) are homgeneous, i.e., the G_2 orbits.

Key Lemma. (M, '93, '98) Isoparametric h's with g = 6 are homogeneous \Leftrightarrow the shape operators of a focal submfd have the kernel indep. of the normal directions.

Classification of isoparametric h'surfaces in S^n

g	1	2	3	4*	6
M	S^{n-1}	$S^k \times S^{n-k-1}$	$C_{\mathbb{F}}$	homogeneous or of OT-FKM type	N^6, M^{12}

^{*} some exceptions.

4 Application 1: Special metrics

Theorem 13. (N.Koiso, '81) Every real analytic Riemannian manifold M with constant scalar curvature can be embedded into certain Einstein manifold \overline{M} as a totally geodesic hypersurface.

Basically, \overline{M} is given by $M \times \mathbb{R}$ with an Einstein metric obtained by solving an ODE. Here, M is a h's of \overline{M} .

• 1-parameter family of h's is a nice tool to find certain metrics.

Construction of special metrics

- Special metrics mean metrics with special holonomy, Ricci flat (Kähler) metrics, etc.
- Such metrics are often constructed on a vector bundle over a Riemannian manifold with nice properties (Einstein etc).

Examples:

- \circ Bryant-Salamon's G_2 -metrics and Spin(7)-metrics.
- o Lü-Page-Pope metrics

Idea: $\pi: Y \to M:$ a vector bundle

 $\Rightarrow Y = \bigcup_{r \geq 0} X_r$ where X_r is the sphere bundle $X_r \to M$ consisting of fiber vectors of constant length r.

• X_r is a hypersurface of Y for r > 0.

If there is a nice metric g_r on each X_r , we may obtain a nice metric allover Y (solving certain ODE w.r.t r).

Special holonomy: (by Berger, '55)

$\operatorname{Hol}(g)$	U(n)	Sp(n)	G_2	Spin(7)
structure	Calabi-Yau	Hyperkähler	G_2	Spin(7)
M	M^{2n}	M^{4n}	M^7	M^8

(the first two: complex geometry, well investigated)

the last two: firstly, metrics are constructed by Bryant ('87), and complete metrics by Bryant-Salamon ('89), both are in an explicit way.

⇒ important in physics, e.g. treated in M-theory by Atiyah-Witten.

Bryant-Salamon's G_2 -metric

 $Y^7 = \Lambda^2_-(M) \to M$: the ASD bundle of $M = S^4$ or $\mathbb{C}P^2$.

Theorem 14. (BS, '89) For a constant $\lambda > 0$, a metric on Y^7

$$g_{\lambda} = (\lambda + r^2)^{1/2} g_b + \frac{1}{(\lambda + r^2)^{1/2}} g_f$$

is a complete Ricci flat metric with $Hol(g) = G_2$, where g_b and g_f are metrics of the base and the fibers, respectively.

A complete G_2 metric is also constructed on the spin bundle $Y^7 = \mathcal{S}$ over S^3 .

Let

$$X_r^6 = \{ \text{fiber vectors of length } r \} \subset Y^7,$$

then

$$X_r \cong \mathbb{C}P^3$$
 for $Y^7 = \Lambda^2_-(S^4)$
$$\underline{SU(3)/T^2}$$
 for $Y^7 = \Lambda^2_-(\mathbb{C}P^2)$
$$\underline{S^3 \times S^3}$$
 for $Y^7 = \mathcal{S}$

Remark. BS metrics are homogeneous on X_r , and hence a cohomogeneity one metric on Y^7 (S. Salamon's talk in the Winter School 2002.)

Relation with isoparametric h'surfaces

 $S^3 \times S^3$ and $SU(3)/T^2$ appear as isoparametric h's in S^7 .

However, the metric used by Bryant-Salamon is completely **different** from that of the isoprametric hypersurfaces.

In the case $SU(3)/T^2$, the former is non-Kähler Einstein metric, while the latter is Kähler non-Einstein.

We have a topological correspondence between Y^7 and a part of S^7 .

The topology of $\Lambda^2_-(\mathbb{C}P^2)$

Recall:

$$Y = \Lambda_{-}^{2}(\mathbb{C}P^{2}) = \bigcup_{r>0} X_{r}, \quad X_{r} \cong C_{\mathbb{C}}, \, r>0.$$

On the other hand, the Cartan h'surfaces $C_{\mathbb{C}} \cong M_t$ and two focal submanifolds $M_{\pm} \cong \mathbb{C}P^2$ give a singular foliation $S^7 = \bigcup_{t \in [-1,1]} M_t$ by a 1- parameter family, via the theory of isoparametric h'surfaces.

Thus we obtain

$$\Lambda^2_-(\mathbb{C}P^2) \cong \bigcup_{r \geq 0} X_r \cong \bigcup_{t \in [-1,1)} M_t \cong S^7 \setminus \mathbb{C}P^2.$$

because

$$X_0 \cong \mathbb{C}P^2 = M_- \text{ and } S_\infty \cong \mathbb{C}P^2 = M_+,$$

by identifying X_r with M_t where

$$t = \frac{r-1}{r+1}, \quad r \ge 0$$

In the case of the spin bundle S over S^3 , $X_r = S^3 \times S^3$, which can be identified with the isoparametric family $\{M_t\}$ in S^7 , and we obtain

Theorem 15. [M, '05]

$$\mathcal{S} \cong S^7 \setminus S^3$$

$$\Lambda^2_{-}(\mathbb{C}P^2) \cong S^7 \setminus \mathbb{C}P^2$$

Recall open Calabi-Yau problem

 \overline{M} : compact Kähler mfd with Ricci> 0,

D: a suitable divisor

Bando-Kobayashi [BK], Tian-Yau [TY] obtain a complete Ricci flat Kähler Einstein metric on $\overline{M} \setminus D$.

Real version:

Construct a complete Ricci-flat, non-flat metric on a manifold $M = \overline{M} \setminus D$, where \overline{M} is a compact Riemannian manifold with positive Ricci curvature, and D is some submanifold of M.

In particular,

For each isoparametric family $\{M_t\}$ in S^n , does there exist a complete Ricci flat, non-flat metric on $S^n \setminus M_{\pm}$?

Theorem 16. [Lü-Page-Pope, 2004] There exists a complete Ricci flat metric on $S^m \times \mathbb{R}^{n+2}$ for any $n, m \geq 1$ (generalization of Taub-NUT metric).

Since $S^m \times \mathbb{R}^{n+2} = \bigcup_{r \geq 0} S^m \times S^{n+1}(r)$, and $S^m \times S^{n+1}(r)$ is identified with an isoparametric h'surface in S^{m+n+1} , where $S^m = M_-$ and $S^{n+1} = M_+$, we obtain

Corollary 17. On $S^{n+m+1} \setminus S^{n+1}$, for any $n, m \ge 1$, there exists a complete Ricci flat metric.

5 Application 2: Calibrated geometry

(M,g): Riemannian manifold

 $\varphi \in \Omega^p$: a closed *p*-form is a calibration \Leftrightarrow for any *p*-plane T in TM,

$$\varphi(T) \leq 1$$

N: a p-dimensional submanifold of M is calibrated

$$\Leftrightarrow \varphi(T_x N) = 1 \text{ at any } x \in N$$

 $(\Rightarrow N \text{ is volume minimizing in the same homology class})$

Example

- (1) Complex submanifolds N^{2p} of a Kähler manifold M, $\varphi = \omega^p/(p!)$, ω : Kähler form of M
- (2) Special Lagrangian submanifolds N^p of a Calabi-Yau manifold M (\Leftrightarrow Ricci-flat Kähler),

 $\varphi = \Re(e^{i\theta}\Omega), \quad \Omega$: the holomorphic (n,0) volume form on M

Special Lagrangian submanifolds:

 \mathbb{C}^{n+1} has a calibration: $\varphi = \Re(e^{i\theta}dz_0 \wedge \cdots \wedge dz_n)$

Def. A submanifold N of a Riemannian mfd is **austere** \Leftrightarrow any shape operators of N have eigenvalues in pairs $\{\pm \lambda_j\}$, and the multiplicities of $\pm \lambda_j$ coincide.

N: austere in $S^n \Rightarrow$ the cone over N: austere in \mathbb{R}^{n+1}

Example. (i) minimal surface = austere surface.

(ii) a complex submanifold of a Kähler manifold

Theorem 18. [Ishikawa-Kimura-M. 2002]

(i) Minimal isoparametric h'surfaces with principal curvatures having the same multiplicity are austere, namely,

$$M_1 = S^{n-1}, \quad M_2 = S^{(n-1)/2} \times S^{(n-1)/2} \quad (n : \text{ odd})$$

 $M_3 = C_{\mathbb{F}}, (m = 1, 2, 4, 8), \quad M_4^{4m}, \quad M_6^{2m}, (m = 1, 2)$

where M_g denotes an isoparametric h'surface with g principal curvatures.

(ii) The focal submanifolds of **any** isoparametric hypersurfaces are austere.

Remark. (i): all homogeneous. (ii) includes both homogeneous and non-homogeneous ones.

Theorem 19. [Harvey-Lawson, 1982] The conormal bundle of the cone of an <u>austere</u> submanifolds in S^n is a special Lagrangian submanifold of $\mathbb{C}^{n+1} = T^*\mathbb{R}^{n+1}$.

Theorem 20. [Kariggianis and Min-Oo, 2004] The conormal bundle of <u>austere</u> submanifolds in S^n is a special Lagrangian submanifold of T^*S^n with the Stenzel metric.

Stenzel metric : a generalization of Eguchi-Hanson metric on T^*S^2 (Ricci flat Kähler).

Corollary 21. [IKM]

- (i) The conormal bundle of the cone over submanifolds given in Theorem 18 are special Lagrangian submanifolds of \mathbb{C}^{n+1} .
- (ii) The conormal bundle of the submanifolds given in Theorem 18 are special Lagrangian submanifolds of T^*S^n with the Stenzel metric.

6 Brezis' question

Q. (Brezis, 1999) Let $u: \mathbb{R}^N \to \mathbb{R}^N$ be a solution of the Ginzburg-Landau system:

$$\Delta u = u(|u|^2 - 1) \quad N \ge 3,$$

with $|u(x)| \to 1$ as $|x| \to \infty$. Assume $\deg(u, \infty) = \pm 1$. Does u have the form

$$u(x) = \frac{x}{|x|}h(|x|),$$

where $h: \mathbb{R}_+ \to \mathbb{R}_+$ is a smooth function, such that h(0) = 0 and $h(\infty) = 1$?

Counterexamples to this question were constructed by Farina (2004) and Ge-Xie (2009), by using Cartan-Münzner polynomials.

In fact, consider the Cartan-Münzner polynomial

$$F: \mathbb{R}^N \to \mathbb{R}$$
 and put $\Phi = \frac{\nabla F}{g}: \mathbb{R}^N \to \mathbb{R}^N$

When $m_1 = m_2$, F satisfies

(i)
$$|DF|^2 = g^2 |x|^{2g-2}$$
, (ii) $\triangle F = 0$

Then putting

$$u(x) = \Phi\left(\frac{x}{|x|}\right)h(|x|)$$

and solving h so that u(x) be a solution to the Ginzburg-Landau system, we obtain conterexamples to Brezis' question if (g, m) = (6, 1): Farina, 2004, and (g, m) = (4, 1): Ge-Xie, 2009

Remark. No other Cartan-Münzner polynomials give counterexamples (Ge-Xie, because of the degree condition).

7 Other directions

I. Hamiltonian stability of Lagrangian submfds:

Theorem 22. [B.Palmer] The image of the Gauss map $G: M \to Q^{n-1}$ of an isoparametric hypersurface M in S^n , defined by $G(p) = p \land \xi_p$ where ξ_p is the unit normal to M at p, is a Lagrangian submanifold of the complex hyperquadric $Q^{n-1} \cong \operatorname{Gr}_2^+(n+1,\mathbb{R})$ (1997).

• Hamiltonian stability of G(M) is studied by M. Hui and Y. Ohnita (2009) in the homogeneous cases.

II. Moment maps

Theorem 23. [S. Fujii, '09] For homogeneous hypersurfaces with g=4 obtained by the isotropy action of a Hermitian symmetric space of classical type, the corresponding Cartan-Münzner polynomial is given by a square norm of the moment map of this action.

III. Relation with integrable systems:

Theorem 24. [Ferapontov, 95] Homogeneous hypersurfaces in S^n correspond to completely integrable n-wave systems.

Related works: Dubrovin, Novikov, Tsarëv, etc.

Q. How we can say about the non-homogeneous OT-FKM type?

Concluding remarks

Hypersurface geometry is important in itself, and also in relation with various fields, as a tool constructing special metrics, special Lagrangian submanifolds, counterexamples of Brezis' question, etc.

In particular, isoparametric h'surfaces are interesting, as they include both homogeneous and non-homogeneous cases.

One of the most interesting problems is to investigate non-homogeneous OT-FKM type hypersurfaces from a view point of group actions.

Thank you for your attention.

参考文献

- [AB] M. Atiyah and J. Berndt, *Projective planes, Severi va*rieties and spheres, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), 1–27
- [AW] M. Atiyah, and E. Witten, M-theory Dynamics on a manifold of G_2 holonomy, Adv. Theor. Math. Phys. 6 (2001), 1–106.
- [B] R. Bryant, Metrics with exceptional holonomy, Annals. of Math. 126 (1987), 525–576.

- [BS] R. Bryant and S. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. **58** (1989), 829–250.
- [BK] S. Bando and R. Kobayashi, Ricci-flat Kähler metrics on affine algebraic manifolds II, Math. Ann. **287** (1990), 175–180.
- [C1] E. Cartan, Familles de surfaces isoparamétriques dan les espaces à courbure constante, Ann. di Mat. 17 (1938), 177–191.
- [C2] E. Cartan, Sur des familles remarkables d'hypersurfaces isoparamétriques dan les espaces sphérique, Math. Z. **45** (1939), 335–367.

- [F] A. Farina, Two results on entire solutions of Ginzburg-Landau system in higher dimensions, J. Funct. Annal. 214 (2004), 386–395.
- [Fe] E. Ferapontov, Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type, and N-wave systems, Diff. Geom. and its Appl. 5 (1995) 335–369.
- [GX] J. Ge and Y. Xie, Gradient map of isoparametric polynomial and its application to Ginzburg-Landau system, J. of Funct. Anal. (2009).
- [HL] Harvey and H. B. Lawson, Clibrated Geometries, Acta Math. 148 (1982), 47–157.

- [HsL] W. Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5, (1971), 1–38.
- [IKM] G. Ishikawa, M. Kimura and R. Miyaoka, Submanifolds with degenerate Gauss mappings in the spheres, Advanced Stud. in Pure Math. **37** (2002), 115–149.
- [KM] S. Karigiannes and M. Min-Oo, Calibrated subbuncles in non-compact manifolds of special holonomy, math. DG/0412312v2 (2005).
- [M1] R. Miyaoka, The linear isotropy group of $G_2/SO(4)$, the Hopf fibering and isoparametric hypersurfaces, Osaka J. of Math. **30** (1993), 179–202.
- [M2] R. Miyaoka, Topology of the Bryant-Salamon G_2 -

- manifolds and some Ricci flat manifolds, RIMS Kokyuroku **1502** (2005), 230–237.
- [M3] R. Miyaoka, Geometry of G_2 orbits and isoparametric hypersurfaces, submitted (2008)
- [M4] R. Miyaoka, The Dorfmeister-Neher theorem on isoparametric hypersurfaces, Osaka J. Math., 46 (2009), 695–715
- [M5] R. Miyaoka, Isoparametric hypersurfaces with (g, m) = (6, 2), submitted (2009)
- [Mü] M. F. Münzner, Isoparametrische Hyperflächen in Sphären I, II, Math. Ann. **251**, (1980), 57–71, Math. Ann. **256** (1981), 215–232.
- [MO] H. Ma and Y. Ohnita, On Lagrangian submanifolds in

- complex hyperquadrics and isoparametric hypersurfaces in spheres, Math. Zeit.(2009)749–785.
- [P] B. Palmer, Hamiltonian minimality and Hamiltonian stability of Gauss maps, Diff. Geom. and Appl. 7 (1997), 51–58.
- [TY] G. Tian and S. T. Yau, Complete Kähler manifolds with zero Ricci curvature II, Invent. Math. 106(1991), 27–60.
- [W] Q. M. Wang, Isoparametric functions on Riemannian manifolds, I, Math. Ann. 277 (1987), 639–646.

Mathematical Institute, Tohoku University, Aoba-ku, Sendai, 980-8578/JAPAN

E-mail Address: r-miyaok@math.tohoku.ac.jp