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Momentum maps — what are they?

G (Lie group) acting on (M,ω) (symplectic manifold)

ξ ∈ g ξM — symplectic vector field on M (so LξM
ω = 0)

Question: Is ξM Hamiltonian?

A vector field X on M is Hamiltonian if ω(X ,−) = dh for some h ∈ C∞(M)

Answer: It depends .... (see later)

Assume action is Hamiltonian: ξM is Hamiltonian for every ξ ∈ g.



what are they . . . ctd

For each ξ ∈ g we have a function hξ ∈ C∞(M) (unique up to constant).

Dependence on ξ is linear (for suitable choices of constants)

This gives a map — the momentum map

J : M −→ g∗

The defining equation is, for m ∈ M and v ∈ TmM ,

〈dJm(v), ξ〉= ω(ξM(m), v).

Immediate consequence (the bifurcation lemma):

Image(dJm) = g◦m ⊂ g∗

. . . responsible for the famous polytope structure of the image



Examples

1. S1 on S2 — rotation about z-axis:

J(x ,y ,z) = z

z

J

b

b

2. SO(3) on S2 — all rotations:

J(x ,y ,z) =





0 −z y
z 0 −x
−y x 0



 ∈ so(3)∗ ≃ so(3)≃ R
3

This is just the “inclusion” map S2 →֒ R
3.



Examples ctd

3. Let V be a symplectic repn of G. Momentum map is given by

〈J(v), ξ〉= 1
2 [ξ.v , v ]

4. Cotangent bundle: G acts on Q and hence on M = T ∗Q. Then,

〈J(q,p), ξ〉= 〈p, ξQ(q)〉 .

5. Generalizing SO(3) on S2: let G act on g∗ by ”coadjoint repn” (dual of
adjoint rep). Let O be an orbit—it’s a symplectic manifold; the momentum
map is the inclusion O →֒ g∗.

6. SE(2) on the plane: J(z) = (z, 1
2 |z|

2) ∈R
2 × so(2)∗ (using R

2 ≃ C)



Existence

ω
TM T ∗M

tangent vector linear form

X vector field α = ιX ω 1-form

X symplectic vector field α closed 1-form

X Hamiltonian vector field α exact 1-form

So, is X = ξM Hamiltonian?

• Obstruction is [α] ∈ H1(M, R).

• If ω = dβ then Jξ = ιξM
β, so obstruction is [ω] ∈ H2(M, R).

• If g= [g,g] then momentum map exists, so obstruction is in H1(g, R).
Indeed, one defines J[ξ,η] :=

{

Jξ, Jη
}

(Poisson brackets)

So if any of these cohomology groups vanishes, the momentum map exists.



Equivariance

Souriau (1968): There is an action of G on g∗ which renders J equivariant.

Basically, this is the coadjoint action (can always be arranged for compact
groups, semisimple groups and cotangent actions)

– but sometimes need to add a cocycle θ : G → g∗

One consequence is that one can define the orbit momentum map j:

M
J

−→ g∗

↓ ↓

M/G
j

−→ g∗/G ( ≃ t∗+ if G compact)

This can be very useful in studying the dynamics of symmetric Hamiltonian
systems.



Coadjoint orbits

For A∈SO(3) and µ∈ so(3)∗ ≃
R

3,
CoadAµ= Aµ

SE(2)≃ R
2
⋊S1. Then

Coad(u,R)(ν, ψ)= (Rν, ψ+Rν.u).

Orbits:

ψ

SO(3) SE(2)



Coadjoint orbits

SE(2) with a non-zero cocycle

θ(R,u) = (iu, 1
2 |u|

2)

(identifying R
2 ≃C) — the orbits

become paraboloids

ψ

For SL(2) (semisimple, non-compact) we have sl(2)≃ R
3;

orbits are level sets of x2 + y2 − z2:
- the origin
- the two regular sheets of the cone
- one sheeted hyperbolae
- each of the sheets of the 2-sheeted hyperbolae



Point Vortices on the sphere

Points x1, . . . ,xN ∈ S2, of vorticities κ1, . . . ,κN . M = S2 ×·· ·×S2, with
symplectic form

ω = κ1ω1 + · · ·κNωN

Momentum map is then

J(x1, . . . ,xN) = κ1x1 + · · ·κNxN .

Clearly equivariant with the standard SO(3) actions.



Point Vortices in the plane

Points z1, . . . ,zN ∈R
2 = C, of vorticities κ1, . . . ,κN .

M = C
N , with symplectic form

ω = κ1ω1 + · · ·+κNωN

Momentum map is then

J(z1, . . . ,zN) =

(

i ∑
j

κjzj ,
1
2 ∑j κj |zj |

2

)

.

Equivariance is, for z = (z1, . . . ,zN)

J(Rz1 +u, . . . ,Rz1 +u) = Coad(R,u)J(z)+Λ(iu, 1
2 |u|

2),

where Λ = ∑κj ∈R (total vorticity) — it’s a cocycle.



A 1-parameter family
In current work (on point vortices) with T. Tokieda, we embed the three groups
SO(3), SE(2), SL(2) in a 1-parameter family parametrized by λ as follows. At
the level of Lie algebras, let λ ∈ R and

X1 =





0 0 0
0 0 −λ
0 1 0



 , X2 =





0 0 λ
0 0 0
−1 0 0



 , X3 =





0 −1 0
1 0 0
0 0 0



 .

These satisfy the commutation relations

[X1, X2] = λX3, [X3, X1] = X2, [X3, X2] =−X1.

For each λ ∈ R, write gλ for the corresponding Lie algebra. Then gλ is the Lie
algebra of the group of automorphisms of the quadratic form x2 + y2 +λz2, and
is isomorphic to

λ < 0 λ = 0 λ > 0
sl(2,R) se(2) so(3)



λ-family ctd ...

Consider the cocycle ϑ : gλ → g∗λ defined by

ϑ(aX1 +bX2 + cX3) =
1
2(−b, a, 0)

And use this to define the (infinitesimal) action of gλ on g∗λ ≃ R
3 by

X ·µ= Xµ+ϑ(X).

[Exercises: (1) check this is an action (this is where the cocycle condition
comes from in general). (2) for λ 6= 0 every cocycle is exact—find the
corresponding ν ∈ g∗λ for which ϑ = δν.]



λ-family ctd ...

Instead of preserving x2 + y2 +λz2 (as before), this modified action preserves
the inhomogeneous form x2 + y2 +λz2 −2z. So the orbits are spheres (or
ellipsoids)/paraboloids/hyperboloids, corresponding to the sign of λ . [The
ellipsoids are spheres if we use the invariant metric ds2 = dx2 +dy2 +λdz2.]

Using the cocycle ϑ (and following Souriau) one can modify the natural Poisson
structure on g∗λ to make J into a Poisson map:

{f , g}(µ) = 〈µ, [ξ,η]〉− 〈ϑ(ξ),η〉

where ξ = df (µ) and η = dg(µ) (both in gλ). The symplectic leaves then
coincide with the orbits of the modified coadjoint action.



Back to point vortices

For each value of λ there is one orbit Mλ ⊂ g∗λ ≃ R
3 passing through the origin.

This is a sphere (ellipsoid), paraboloid or hyperboloid accordingly as λ is
positive, zero, or negative. We use this as the space for the point vortices. The
phase space is (Mλ)

n, and the momentum map Jλ : (Mλ)
n → g∗λ is given by

Jλ(x1, . . . ,xn) = ∑κjxj .

This is Poisson (with the modified structure from the previous slide) and
equivariant.

This is the starting point for studying the dynamics of point vortices using the
curvature of the surface as a parameter (the curvature of Mλ is 4λ). But I have
no time to continue further.

Remark This 1-parameter family of Lie algebras was developed to better
understand a paper of Y. Kimura (see References), and details will appear in a
joint paper with T. Tokieda.
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