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Overview

Protein-protein interaction (PPI) networks

Random graph models

Geometric model

Algorithm for testing geometric model

Lock-and-key model

Algorithm for discovering locks and keys

Results on biological data
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Central Dogma of Molecular Biology
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Yeast 2-Hybrid Protein-Protein Interaction Networks

Data:

list of N proteins (nodes)

list of protein pairs (edges)

This is an undirected, unweighted graph

Also, a symmetric N × N matrix of 0’s and 1’s
Yeast has N ≈ 3, 000
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Uetz et al. 2000, Yeast PPI
yeast.gif (GIF Image, 612x695 pixels) http://www-personal.umich.edu/~mejn/networks/yeast.gif

1 of 1 17/10/05 13:54

Specificity and stability in topology of protein
networks, S. Maslov & K. Sneppen, Science, 2002
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Adjacency Matrix: Uetz et al. 2000, Yeast PPI
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Adjacency Matrix: Ito et al. 2001, Yeast PPI
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Y2H Protein-Protein Interaction Networks

Noisy: 50–90% false positive, 50–90% false negative

Two types of false positive

Technical: experimental limitations

Biological: don’t occur in vivo

not expressed at same time
not in same sub-cellular compartment, or same
tissue

Interactions may also depend on the environment

How can we use this data . . . . . . ?
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Fine details. . .

Typical questions:

Are there any other proteins like protein Y?

What is the biological function of protein X?

Which proteins act together?

What happens if protein Z is removed?

Also: which are the false pos/negs ?
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Big picture. . .

PPI networks are not regular
Describe them by a random graph model?

capture many PPI networks with a small number of
parameters:

distinguish between different organisms
get evolutionary insights

generate synthetic data sets to test algorithms

Several random graph “models” have been proposed . . . . . .
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Comparing Networks

Global Measures

Degree distribution

Pathlength distribution

Clustering coefficients

Local Measure

graphlet frequencies . . .
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Graphlet Frequencies (Pržulj et al.)
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Geometric Model (Pržulj et al., 2004)
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Geometric Random Graph
randomly place N nodes in unit square

connect nodes within distance ε

Able to match PPI properties (pathlengths, clustering
coefficients, degree distributions, graphlet frequencies)

Modeling Interactome: Scale-Free or Geometric?, N.
Pržulj, D. Corneil and I. Jurisica, Bioinformatics, 2004

Analyzing Large Biological Networks . . . , N. Pržulj,
Ph.D. Thesis, University of Toronto, 2005

Question: Given a PPI network, can we map it on to a
geometric random graph?

⇒ develop a tool for reverse engineering a GRG

Given nodes and edges, optimally place the nodes in R
2

such that nodes within a distance ε are connected
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Multi-Dimensional Scaling (MDS)

Problem:

Given all pairwise distances {dij}N
i,j=1,

find vectors {x[i]}N
i=1 ∈ R

m such that

‖x
[i] − x

[j] ‖ = dij , ∀i, j

i.e. go from pairwise distance to location
Notation

X =
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MDS Theory

Define (sym. pos. def.) A ∈ R
N×N by

A(i,j) = -0.5*( Dsq(i,j) - mean(Dsq(i,:)) ...
- mean(Dsq(:,j)) + mean(mean(Dsq)) );

Then XT X = A ⇒ ‖x
[i] − x

[j] ‖ = dij

Symm. Real Schur Decomp. A = UT ΣU ⇒ use

X = Σ
1

2 U =









√
σ1u

[1] . . . . . . . . .√
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[2] . . . . . . . . .
. . . . . . . . . . . .√

σNu
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∈ R
N×N

To embed into, say, R
2 “best” approximation is

X = Σ
1

2 U =

[ √
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MDS to reverse engineer a GRG?

PPI data is “0 or 1”, we don’t have Euclidean distances

Idea use pathlength
d2

ij = pathlength from node i to node j

Compute pathlengths 1, 2, . . . ,K, set the rest to Kmax, so

distance matrix is sparse plus rank 1

∞’s avoided

Now apply MDS to recover locations in R
2
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N = 100, ε = 0.25 (K = 4, K
max

= 5)

Eigs of A: 38.2, 30.1, 10.7, 8.9, 6.1, 3.8, . . .
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Same Example, “optimal” ε
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Same Example, ROC curve

Area under curve is 0.965
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GRG data, coin flip to predict links

Area under curve is 0.48
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Erdõs–Rényi Random Graph with MDS algorithm

Area under curve is 0.67
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Nineteen PPI networks
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Lock-and-Key Model

On the structure of protein-protein interaction
networks, A. Thomas, R. Cannings, N. Monk, C. Cannings,
Biochemical Society Transactions 31, 2003

Idea: two proteins interact because they ‘fit together’
⇒ complementary domains, i.e. locks and keys
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Lock-and-Key Model

Thomas et al. model: m locks and m matching keys

let each protein have each lock and key with
independent probability p

put an edge between two proteins ⇔ they share at least
one lock/key pair

Thomas et al. looked at big picture issue:
Does this model reproduce the almost scale free nature of
PPI networks?

Our approach:

introduce different modelling assumptions

develop an algorithm for inferring locks and keys

answer both big picture and fine detail questions
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Our Assumptions
There exists a lock/key pair in the network such that any
protein with this lock/key

does not have the matching key/lock

will only interact with a protein having the matching
key/lock

only has a fixed proportion 0 ≤ θ ≤ 1 of its lock/key
matches recorded as interactions

⇒ the adjacency matrix has a pair of eigenvalues

λ = ±θ
√

locksum × keysum

with eigenvectors
√

keysum ind
[lock] ±

√
locksum ind

[key]
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Algorithm

Calculate eigenvals/vecs

Group into ≈ ±λ pairs

For each pair with eigvecs ua and ub

choose a threshold, K

|ua + ub|i ≥ K means protein i has lock

|ua − ub|i ≥ K means protein i has key

Successful at recovering locks and keys in synthetically
generated networks (good sensitivity and specificity)
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Spectral Properties: Uetz (2000) data
>> [U,D] = eigs(W,8,’BE’);

>> diag(D)

ans =
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Result for Uetz et al. (2000) yeast data
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Further Investigation . . .

Other biological data shows that
all five proteins in one group possess the SH3 domain

⇒ we have identified the key!

Recent experiments (Kessels & Qualmann 2004, Friesen et
al. 2005) show that the SH3 domain is involved in trafficking
of vesicles

All proteins in the other group are part of the actin cortical
patch assembly mechansim of vesicle endocytosis (Drees
et al. 2001)

[vesicle: small, enclosed compartment within a cell ]
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Arabidopsis Thaliana (small flowering plant)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

 

Homeobox Transcription Factor module?
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Saccharomyces Cerevisiae (yeast)
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Protein Trafficking module?
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Homo Sapiens (us!)
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Smad Transcription Factor module?
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Drosophila Melanogaster (fruit fly)
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Cell Cycle Transcriptional Regulation module?

. . . plus many more . . .
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Recap

Lock-and-key model: Extension of Thomas et al. (2003)
model to

make testable predictions about PPI network structure

extract important structural information from (noisy)
PPI data sets

Note: different to traditional clustering
Essentially clustering on paths of length two

Match local/global PPI properties? . . .
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Stickiness Model

Back to the big picture

Can we produce a model that matches PPI network
properties?

Inferring number and distribution of locks and keys in a real
(noisy) network: very challenging

Idea summarize abundance/popularity of binding domains
as a single number per protein: stickiness index

[Analogous idea of fitness in physics community]
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Modelling Assumptions

Assumption 1
High degree implies many and/or popular binding domains:
high stickiness
So high degree ⇒ high stickiness

Assumption 2
A pair of proteins is more likely to interact (share
complementary binding domains) if they both have high
stickiness index
Take the product of stickiness indices

Hence, we suppose P (i ↔ j) = f (degi) f
(

degj

)

Match expected degree ⇒ f (degi) = deg
i√

P

N

k=1
deg

k
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PseudoCode

input {degi}N
i=1

output{wij}N
i,j=1

for i = 1 to N

θi = degi/
√

∑N
j=1 degj

end
Initialize all wij = 0
for i = 1 to N − 1

for j = i + 1 to N
compute a uniform (0, 1) sample, r

if r ≤ θiθj

wij = 1 and wji = 1
end if

end for
end for
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Graphlet Frequency Comparison
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What’s New?

Spectral algorithm for discovering bi-partite subgraphs
(locks and keys)

Realistic results on PPI networks

Spectral algorithm for reverse engineering a
geometric graph

Supports the claim that PPI networks have some
geometric structure

Simplified stickiness model gives excellent local and
global fit to PPI data

with Alan Taylor:
CONTEST (CONTrolable TEST matrices) for MATLAB at
http://www.maths.strath.ac.uk/research/groups/numerical_analysis/contest
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