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1 Introduction

The aim of these lectures is to prove the following:

1.1 Theorem (Pila-Wilkie [PW])

Let S ⊆ Rn be a set definable in some o-minimal expansion of the order field of real numbers.
Assume that S contains no infinite semi-algebraic subset. Let ε > 0 be given. Then for all
sufficiently large H, the set S contains at most Hε rational points of height at most H.

• The underlined terms will be defined below.

1.2

For q ∈ Q, say q = a/b in lowest terms, the height of q, denoted ht(q), is defined as max{|a|, |b|}.
For q = 〈q1, . . . , qn〉 ∈ Qn, ht(q) := max{ht(q1), . . . ,ht(qn)}.

1.3

A set S ⊆ Rn is called basic semi-algebraic if it is of the form {a ∈ Rn : P (a) > 0} for some
polynomial P (x) ∈ R[x].

The collection An of all semi-algebraic subsets of Rn is defined inductively as follows:

(1) Every basic semi-algebraic subset of Rn is in An;

(2) If X ∈ An, then Rn \X ∈ An;

(3) If X,Y ∈ An, then X ∪ Y ∈ An and X ∩ Y ∈ An;

(4) Nothing else is in An.

1.4 Exercises

(1) Let P (x) ∈ R[x] (where x = x1, . . . , xn). Prove that Z(P ) ∈ An, where
Z(P ) := {a : P (a) = 0}.

(2) Suppose that X ∈ An and Y ∈ Am. Prove that X × Y ∈ An+m.



(3) Find an example of a polynomial P (x) ∈ R[x] (in the single variable x) such that the closure
of the set {x ∈ R : P (x) > 0} is not the set {x ∈ R : P (x) ≥ 0}. Show, however, that (for
your example) the closure of {x ∈ R : P (x) > 0} is a semi-algebraic subset of R.

2 Some semi-algebraic geometry

In fact, it is the case that the closure of any semi-algebraic set is semi-algebraic, but this is very
difficult to prove directly. Instead we appeal to the fundamental result of the subject.

2.1 Theorem (Tarski-Seidenberg, see e.g. [vdD])

Let Y ∈ An+m and let X := πn+m
n [Y ] be the projection of Y onto the first n coordinates, i.e.

X = {x̄ ∈ Rn : ∃ȳ ∈ Rm〈x̄, ȳ〉 ∈ Y }.

Then X ∈ An.

2.2 Exercise

Let Y ∈ An+m and set X ′ := {x̄ ∈ Rn : ∀ȳ ∈ Rm〈x̄, ȳ〉 ∈ Y }. Prove that X ′ ∈ An.

Now, for any set X ⊆ Rn, observe that the closure X of X in Rn satisfies, for all x̄ ∈ Rn,

x̄ ∈ X ⇐⇒ ∀ε ∈ R(ε > 0 =⇒ ∃ȳ ∈ Rn(‖x̄− ȳ‖2 < ε and ȳ ∈ X)).

So if X ∈ An, the expression on the right-hand side here provides a recipe for showing (via uses of
2.1 and of the rules 1.3(1), (2), and (3)) that X ∈ An.

2.3 Exercises

(1) Complete the proof that X ∈ An whenever X ∈ An. Use a similar method to show that the
interior X◦ of X is in An whenever X is.

(2) Convince yourself that if f : Rn → R is a semi-algebraic function (meaning that its graph
is a semi-algebraic subset of Rn+1), then the set {x̄ ∈ Rn : f is continuous at x̄} is a semi-
algebraic subset of Rn.

There are many structure theorems for semi-algebraic sets. For example, every X ∈ An has the

form X =
N⋃
i=1

Xi, where each Xi is in An and is connected. This is fairly clear for n = 1, and

it turns out that one can actually deduce the general case from this using little more than the
properties 1.3(1), (2), (3), and 2.1. This suggests an axiomatic treatment.

3 O-minimal structures ([PS], [vdD])

Let A be any non-empty set and suppose we are given, for each n ≥ 1, a collection Sn of subsets of
An. We write S for the disjoint union

⋃̇
n≥1
Sn. We call S a structure (on A).



3.1 Definition

The definable hull, S̃ =
⋃̇
n≥1
S̃n, of S is the collection of sets defined inductively as follows:

(1) Sn ⊆ S̃n (and each X ∈ S̃n is a subset of An);

(2) {a} ∈ S̃1 for each a ∈ A;

(3) For each i, j with 1 ≤ i, j ≤ n, {〈a1, . . . , an〉 ∈ An : ai = aj} ∈ S̃n;

(4) If X ∈ S̃n and Y ∈ S̃m then X × Y ∈ S̃n+m;

(5) If X,Y ∈ S̃n, then X ∪ Y,X ∩ Y , and An \X are all in S̃n;

(6) If X ∈ S̃n+m, then πn+m
n [X] ∈ S̃n;

(7) Nothing else is in S̃n.

Sets in S̃ are called definable (from, or in, S). Functions whose graphs are in S̃ are called
definable functions.

3.2 Examples and exercises

(1) Say A = C and Sn = {Z(P ) : P (z1, . . . , zn) ∈ C[z1, . . . , zn]}. By quoting a suitable famous
theorem, prove that S̃n consists precisely of the constructible sets (i.e. S̃n is just the Boolean
closure of Sn).

(2) Say A = N and Sn = {Z(P ) ∩ Nn : P (x1, . . . , xn) ∈ Z[x1, . . . , xn]}. By quoting a suitable
famous theorem, prove that S1 contains a non-computable set.

(3) For arbitrary A,S, and X ∈ S̃n, prove that Xσ ∈ S̃n, where σ is any permutation of {1, . . . , n}
and Xσ := {〈xσ(1), . . . , xσ(n)〉 ∈ An : 〈x1, . . . , xn〉 ∈ X}.

Henceforth, we shall assume that A = R (thereby abandoning most model-theoretic methods) and
consider only those structures S on R with An ⊆ Sn for all n.

3.3 Definition

A structure S (on R) is called o−minimal if every set X ∈ S̃1 is a finite union of open intervals
and singleton sets.

The underlying assumption that An ⊆ Sn for all n is precisely what is meant by saying that
”S is an o-minimal expansion of the ordered field of real numbers” in 1.1. Thus, all the terms in
our main theorem have now been explained.

3.4 Remarks and examples

(1) It is crucial in 3.3 that the condition on X (which is equivalent to saying that X has finite
boundary) holds for all X in S̃1 and not just those X in S1.

(2) We have seen that A (= Ã) is an o-minimal structure, so at least one exists.



(3) Another example (see [W]) is Aexp, where

Aexp
n := {Z(F ) : F (x1, . . . , xn) = P (x1, . . . , xn, e

x1 , . . . , exn) for some P (x1, . . . , xn, y1, . . . , yn) ∈
R[x1, . . . , xn, y1, . . . , yn]}.
The definable sets here are precisely the projections of sets in Aexp.

(4) In [Mi], Miller shows that if S is o-minimal and some function f : R → R of greater than
polynomial growth (at ∞) is definable (from S), then Aexp ⊆ S̃ (so, of course, Ãexp ⊆ S̃).

(5) Another example (van den Dries-Denef [DD], Gabrielov [G]) is Aan. Here we take Aan
n to be

the union of An and the collection of all bounded subanalytic subsets of Rn. I won’t define
this collection here, but suffice it to say that if U is an open subset of Rn and f : U → R is a
real analytic function (i.e. it is infinitely differentiable, and for each ā ∈ U , the Taylor series
of f at ā converges to f(x̄) for each x̄ ∈ Rn sufficiently close to ā), then f �K is definable in
Aan for each closed box K ⊆ U . (Exercise: exhibit an analytic function f : (0, 1)→ R which
is not definable in any o-minimal structure).

(6) The largest o-minimal structure required for application in this course is Aan, exp (:= Aan ∪
Aexp). The o-minimality here is due to van den Dries and Miller (see [DM]).

(7) There is no largest o-minimal structure. Indeed, in [RSW] it is shown that if f : [0, 1] → R
is any infinitely differential function, then there exists o-minimal structures S1 and S2 and
functions fi : [0, 1]→ R definable in Si (for i = 1, 2), such that f = f1 + f2. (Exercise: Why
does this justify the claim here?)

(8) (Pila-Bombieri) Theorem 1.1 is the best result possible in the sense that the ”ε” cannot be
replaced by any function ε(H) > 0 which tends monotonically to 0 as H →∞. This is already
the case for the o-minimal structure Aan. However, for the structure Aexp, I conjecture that
”Hε” may be replaced by (logH)c for some constant c (depending on the set S). This is
known for definable curves and some surfaces (see Jones-Thomas [JT], Butler [B]).

4 Some 1-dimensional o-minimal theory

Throughout this section, S is an arbitrary o-minimal structure. For those not used to working
”inside” o-minimal structures, the following exercise provides good practice as well as containing
an important result.

4.1 Exercise

Let a < b and suppose that f : (a, b) → R is a definable function (in S). Prove that lim
x→b−

f(x)

exists (an an element of R ∪ {±∞}).

The first major result in the subject is:

4.2 The Monotonicity Theorem

Let f : R → R be a definable function. Then there exist real numbers a1 < a2 < · · · < aN such
that (setting a0 = −∞ and aN+1 = +∞) for each i = 0, . . . , N , f �(ai,ai+1) is continuous and either
strictly monotonic or constant.



4.3

It is a remarkable fact of o-minimality (due to Pillay and Steinhorn [PS]) that when a finiteness
theorem has been established, then it usually holds uniformly. More precisely, suppose that F :
Rn+m → Rk is a definable map. This gives rise to a family

FF := {F (x̄, ·) : x̄ ∈ Rn}

of definable maps from Rm to Rk parameterized by Rn. Such a family is called a definable family
of maps.

Now if, in 4.2, f ∈ FF , then the N may be chosen to depend only on F . I.e., one may take
the same N for all f ∈ FF . (We are in the case m = k = 1 here). Further, for each i = 1, . . . , N ,
the correspondence f 7→ ai may be chosen to be definable in the sense that if f(·) = F (x̄, ·), then
the a1, . . . , aN can be chosen to be definable functions of the parameter x̄.

4.4 Exercises

(1) (a) Make precise the notion of a definable family of subsets (of Rn) and deduce (from 4.2,
4.3) a uniformity result for definable families of subsets of R. (Further exercise for model
theorists: Now deduce the Pillay-Steinhorn fundamental theorem for o-minimal structures,
namely that any structure (not necessarily with domain R) which is elementarily equivalent
to an o-minimal structure is also o-minimal.)
(b) Prove this uniformity result directly in the semi-algebraic case (i.e. the case S = A).

(2) Let f : R→ R be definable. Prove that the set

C ′f := {x ∈ R : f is continuously differentiable on some open neighbourhood of x}

is definable (and uniformly so in definable families of functions). Deduce that C ′f is cofinite
(and hence uniformly so). [Hint: a monotone function (defined on an open interval) is differ-
entiable (Lebesgue-) almost everywhere. Question for model theorists: why is this cheating?].
Show further that the derivative, f ′ �C′f , of f , is definable.

5 Reparameterization (one variable case)

Theorem 1.1 is proved by first reducing to the case that S ⊆ (0, 1)n (which is easy upon observing
that the four functions x 7→ ±x±1 preserve height (and definability)), and then to the case that S
is the image of some definable map F : (0, 1)m → (0, 1)n for some m < n. (We assume that n ≥ 2.
I leave the case n = 1 as an exercise!)

The idea now is to reparameterize F so that its derivatives, up to some order p, exist and
are bounded by 1. This means that we look for a finite set, Φ say, of definable Cp (= p-times
continuously differentiable) maps φ : (0, 1)m → (0, 1)m such that F ◦ φ is also Cp and both φ and
F ◦ φ have derivatives (of all orders ≤ p) bounded by 1. We also require that

⋃
φ∈Φ

Im(φ) = (0, 1)m.

In this section, I consider the case m = 1.
So let F : (0, 1) → (0, 1)n, x 7→ 〈F1(x), . . . , Fn(x)〉 be a definable map. (In fact, everything

must be uniform in definable families of such maps, but we suppress the parameters and simply
observe that this is the case.) We assume that one of the Fi’s is the identity function. By 4.4.(2),
there exist a0 = 0 < a1 < · · · < aN < 1 = aN+1 such that each Fi is C1 on each interval (aj , aj+1).



Further, by considering the definable sets {x ∈ R : |F ′i (x)| < |F ′k(x)|} (for 1 ≤ i, k ≤ n) and using
the definition of o-minimality (3.3) or, more precisely, 4.4(1)(a), we may suppose (after further
subdivision) that for each j = 0, . . . , N and each i, k = 1, . . . , n that |F ′i (x)| − |F ′k(x)| has constant
sign (positive, negative, or zero) throughout (aj , aj+1).

Fix some j with 1 ≤ j ≤ N . We first find the set Φ, as described above, for the case p = 1.
Let x0 ∈ (aj , aj+1) and choose i0 so that

|F ′i0(x0)| ≥ |F ′i (x0)| for i = 1, . . . , n.

Then for all x ∈ (aj , aj+1) we have

|F ′i0(x)| ≥ |F ′i (x)| for i = 1, . . . , n, and so also (5.1)

|F ′i0(x)| ≥ 1. (5.2)

In particular, Fi0 maps (aj , aj+1) strictly monotonically onto some interval (c, d), where 0 ≤ c <
d ≤ 1. Now define φj : (0, 1) → (0, 1) by x 7→ F−1

i0
(c + (d − c)x). Clearly φj is definable and

satisfies, for all x ∈ (0, 1),

Fi0(φj(x)) = c+ (d− c)x (5.3)

and Im(φj) = (aj , aj+1). (5.4)

Then, for x ∈ (0, 1), |φ′j(x)| =
∣∣∣∣ d−c
F ′i0

(φj(x))

∣∣∣∣ ≤ |d− c| (by (5.2), (5.4)). Further, for i = 1, . . . , n,

|(Fi ◦ φj)′(x)| = |F ′i (φj(x))| · |φ′j(x)|

=
|F ′i (φj(x))| · |d− c|
|F ′i0(φj(x))|

≤ |d− c| (by (5.1), (5.4))

≤ 1.

So, taking Φ to be {φ0, . . . , φN} together with the constant functions x 7→ aj (for j = 1, . . . , N),
we have established the following:

5.5 Lemma (The C1-1-reparameterization lemma)

Let F : (0, 1)→(0, 1)n be any definable map. Then there exists a finite set Φ of definable, C1

functions mapping (0, 1) to (0, 1) such that
⋃
φ∈Φ

Im(φ) = (0, 1) and such that for each φ ∈ Φ and

i = 1, . . . , n, both |φ′| and |(Fi ◦φ)′| are bounded by 1 on (0, 1), where Fi denotes the ith coordinate
function of F .

We now aim to improve C1 to Cp in 5.5. We use the following:

5.6 Lemma

Let p ≥ 1 and let I be a bounded open interval in R. Suppose that f : I → (0, 1) is any (not
necessarily definable) Cp+1 function having the property that for all x ∈ I and all j = 0, . . . , p+ 1,
f (j)(x) 6= 0. Then for j = 0, . . . , p and all x ∈ I,

|f (j)(x)| ≤
(
j + 1

δI(x)

)j
,



where δI(x) := min{x− a, b− x} (where I = (a, b)).
Proof

By linear rescaling it is sufficient to consider I = (0, 1) and to prove that, for all x ∈ (0, 1
2 ],

|f (j)(x)| ≤
(
j + 1

x

)j
for j = 0, . . . , p.

We use induction on j (for all f satisfying the hypotheses). The case j = 0 being clear,
assume that the lemma holds for some j with 0 ≤ j < p. Since neither f (j+1) nor f (j+2) has a zero
(note that j + 2 ≤ p+ 1), it follows that |f (j+1)| is montonic on (0, 1). Assume first that |f (j+1)| is
decreasing on (0, 1). Let x ∈ (0, 1

2 ]. Define x0 := j+1
j+2 · x, so that 0 < x0 < x ≤ 1

2 . By the Mean
Value Theorem, there is some ξ ∈ [x0, x] such that

f (j)(x)− f (j)(x0) = f (j+1)(ξ) · (x− x0). (1)

Since f (j) has no zeros, it follows that |f (j)(x)−f (j)(x0)| is at most max{|f (j)(x)|, |f (j)(x0)|} which,

by the inductive hypothesis, is bounded by
(
j+1
x0

)j
=
(
j+2
x

)j
. Further, since |f (j+1)| is decreasing,

|f (j+1)(ξ)| ≥ |f (j+1)(x)|. Also, |x−x0| = x
j+2 . Putting the last three remarks into equation (1), we

obtain
(
j+2
x

)j
≥ |f (j+1)(x)|, as required.

Now if |f (j+1)| is increasing on (0, 1), we consider the function g : (0, 1)→ (0, 1), x 7→ f(1−x).
This satisfies all the hypotheses of the theorem, and hence too the inductive hypothesis: |g(j)(x)| ≤(
j+1
x

)j
(for all x ∈ (0, 1

2 ]). But |g(j+1)(x)| is decreasing on (0, 1), so we may apply the argument

above to obtain |g(j+1)(x)| ≤
(
j+2
x

)j+1
(for all x ∈ (0, 1

2 ]).

Now for x ∈ (0, 1
2 ], x ≤ 1 − x, so |f (j+1)(x)| ≤ |f (j+1)(1 − x)| (as |f (j+1)| is increasing on

(0, 1)). But |f (j+1)(1 − x)| = |g(j+1)(x)|, so we obtain that |f (j+1)(x)| ≤
(
j+2
x

)j+1
in this case,

too.

5.7 Exercises

(1) Formulate and prove a many variable version of 5.6. (Unfortunately, this does not seem to
help in proving the many variable reparamterization lemma.)

(2) Suppose that f : (0, 1)→ (0, 1) satisfies the hypotheses of 5.6 for all p. Prove that the series

U(z) = U(x+
√
−1y) :=

∞∑
j=0

f (j)(x)

j!
· (
√
−1y)j

converges absolutely and uniformly on any compact subset of the region {x+
√
−1y : e · |y| <

x ≤ 1
2}. Deduce that f has a complex-analytic continuation to this region and hence that f

itself, which was only assumed to be a C∞ function, is in fact real-analytic. (An old theorem
of Bernstein asserts that if f : (0, 1) → (0, 1) is a C∞ function with f (j)(x) > 0 for all
j = 0, 1, 2, . . . and all x ∈ (0, 1), then f is real-analytic.)



5.8 Lemma

Let p ≥ 1 and I be any bounded open interval in R. Suppose that f : I → (0, 1) is any Cp+1

function having the property that for all x ∈ I and all j = 0, . . . , p+1, f (j)(x) 6= 0. Assume further
that |f ′(x)| ≤ 1 for all x ∈ I. Then for j = 1, . . . , p and all x ∈ I we have

|f (j)(x)| ≤
(

j

δI(x)

)j−1

.

Proof
Apply 5.6 with f ′ in place of f .

The previous lemmas suggest a reparameterization of the form f((δI(x))p). So we need a
formula for the higher derivatives of composite functions.

5.9 Exercise

Let f : I → R, g : J → I be any Cp functions, where I, J are open subsets of R. Then for any
x ∈ J and q = 1, . . . , p, (f ◦ g)(q)(x) has the form

q∑
k=1

f (k)(g(x)) ·

∑
(q,k)

Bq(k1, . . . , kq) ·
q∏

ν=1

(g(ν)(x))kν


for some positive integers Bq(k1, . . . , kq) (independent of f, g) and where the inner summation is
over all q-tuples 〈k1, . . . , kq〉 of non-negative integers satisfying the conditions

k1 + k2 + · · ·+ kq = k and k1 + 2k2 + · · ·+ qkq = q.

5.10 Remark

A formula attributed to the Blessed Francesco Faà di Bruno (1825-1888) gives the value for the
coefficients:

Bq(k1, . . . , kq) =
q!

q∏
ν=1

kν !(ν!)kν

(where 0! = 1).

5.11 Theorem (The Cp-1-reparameterization theorem)

Let F : (0, 1) → (0, 1)n be any definable map. Then for any p ≥ 1, there exists a finite set Φ of
Cp functions mapping (0, 1) to (0, 1) such that

⋃
φ∈Φ

Im(φ) = (0, 1) and such that for each φ ∈ Φ,

i = 1, . . . , n, and q = 1, . . . , p, both |φ(q)| and |(Fi ◦ φ)(q)| are bounded by 1 on (0, 1), where Fi is
the ith coordinate function of F . (Further, |Φ| depends only on p and uniformly on F , as do the
functions in Φ.)
Proof

It is easily seen (exercise) that it is sufficient to prove the theorem with the bound 1 in the
conclusion replaced with some function of p (independent of F ). This being said, we may assume,
by 5.5, that F is a C1 function with the derivatives of its coordinate functions bounded by 1.



Now, by repeated use of 4.4(2) and the usual subdivision method, there exist a0 = 0 <
a1 < · · · < aN < aN+1 = 1 such that F is a Cp+1 map on each interval (aj , aj+1) and for
ν = 1, . . . , p + 1, each coordinate function of F (ν) is either identically zero or has no zeros on

(aj , aj+1). Define φj : (0, 1)→ (aj , aj+1) by φj(x) := aj + 1
2(aj+1−aj)xp. Then |φ(q)

j | ≤ p! on (0, 1)
for each q = 1, . . . , p. Also, for 〈k1, . . . , kq〉 a q-tuple as in 5.9, we have∣∣∣∣∣

q∏
ν=1

(φ
(ν)
j (x))kν

∣∣∣∣∣ =

∣∣∣∣∣
q∏

ν=1

((p(p− 1) · · · (p− ν + 1) · (aj+1 − aj
2

) · xp−ν)kν

∣∣∣∣∣
≤

q∏
ν=1

pν·kν · (aj+1 − aj
2

)kν · xpkν−νkν

= pq · (aj+1 − aj
2

)k · xpk−q (for x ∈ (0, 1)).

We now apply 5.9 and 5.6 with I = (aj , aj+1), J = (0, 1), g = φj , and f = Fi �(aj ,aj+1), where Fi is
some coordinate function of F .

Note that φj actually maps into (and in fact, onto) the left open half of the interval I, so
that δI(φj(x)) = 1

2(aj+1 − aj)xp for all x ∈ (0, 1). So it follows from 5.6 that for all x ∈ (0, 1) and

all k = 1, . . . , q, |f (k)(φj(x))| ≤
(

2k
(aj+1−aj)xp

)k−1
. Applying 5.9, we obtain

|(f ◦ φj)(q)(x)| ≤
q∑

k=1

(
2k

(aj+1 − aj)xp

)k−1

· pq · xpk−q ·
(
aj+1 − aj

2

)k
·B′q(k)

= xp−q · pq · (aj+1 − aj
2

) ·
q∑

k=1

kk−1 ·B′q(k)

≤ B′′(p) (since q ≤ p).

[Exercise: Show that B′′(p) may be taken to be c1 · pc2p for some small explicit constants c1, c2.] A
similar calculation applies to the function aj+1−φj , which maps onto the right open half of the in-
terval I. Thus, the proof of 5.11 is now complete upon taking Φ to be {φj , aj+1−φj : j = 0, . . . , N}
together with the constant functions with values a1, . . . , aN ,

a0+a1
2 , . . . ,

aN+aN+1

2 .

5.12 Remark

The parenthetical comment in the statement of 5.11 amounts to this: for F ranging over a definable
family of maps F (x̄, ·) : (0, 1) → (0, 1)n, the number N of subintervals in the above proof stays
bounded (i.e. has an upper bound independent of x̄) and the endpoints aj are given by N definable
functions of the parameters x̄. It follows that the reparameterizing functions in Φ depend definably
on x̄. (Of course, this is all for a fixed given p ≥ 1.)

6 Proof of 1.1 in the 1-dimensional case

There is a well-defined notion of dimension for definable sets which we shall come to later. It
turns out that definable subsets of (0, 1)n having dimension 1 are precisely the images of definable
functions f : (0, 1)→ (0, 1)n. The 1-dimensional case of 1.1 thus reduces to the following:



6.1 Theorem

Let f : (0, 1) → (0, 1) be definable and assume that graph(f) contains no infinite semi-algebraic
subset. Then for any ε > 0, there exists C = C(ε) such that for all H > C, there are fewer than
Hε pairs 〈q1, q2〉 of rational numbers of height at most H such that f(q1) = q2.

6.2 Exercises

(1) Show that graph(f) (f as above) contains no infinite semi-algebraic subset if and only if for all
a, b with 0 < a < b < 1 and all non-zero polynomials P (x, y) ∈ R[x, y], there exists α ∈ (a, b)
such that P (α, f(α)) 6= 0.

(2) Show that it is indeed sufficient to prove 6.1 in order to establish 1.1 in the 1-dimensional
case (i.e. why may we take n = 1).

The proof of 6.1 has three stages. The second of these stages is pure transcendental number theory
and requires no o-minimality (nor definability) at all:

6.3 Lemma

Let p and d be integers satisfying 100 ≤ 4p ≤ d2 ≤ 5p and let φ, ψ : (0, 1)→ (0, 1) be Cp functions
whose derivatives (of all orders ≤ p) are bounded by 1.

Then for all α ∈ (0, 1) and all H > 4 · (2d − 2)d/4, there exists a non-zero polynomial
P (X1, X2) ∈ Z[X1, X2] of degree at most d − 1 in each variable such that P (q1, q2) = 0 for all
rationals q1, q2 ∈ (0, 1) satisfying

(1) ht(〈q1, q2〉) ≤ H and

(2) there exists β ∈ (0, 1) with |β − α| < H−20/d such that φ(β) = q1 and ψ(β) = q2.

For the proof, we use the following version of the Dirichlet Box Principle (i.e. the Pigeon
Hole Principle). I leave the proof as an exercise, or see [Wa] (page 132, Lemma 4.11).

6.4 Proposition (Thue-Siegel)

Let ν ≥ 1, µ ≥ 0 be integers and for each i, j with 1 ≤ i ≤ ν, 0 ≤ j ≤ µ, let vi,j be a real number.
Let u,X, ` be positive integers satisfying

(1) u ≥ max
0≤j≤µ

ν∑
i=1
|vi,j |, and

(2) `µ+1 < (X + 1)ν .

Then there exist integers A1, . . . , Aν such that

(3) 0 < max
1≤i≤ν

|Ai| ≤ X, and

(4) max
0≤j≤µ

∣∣∣∣ ν∑
i=1

Ai · vi,j
∣∣∣∣ ≤ uX

` .



6.5 Proof of 6.3

Let θ1(x), . . . , θd2(x) be an enumeration of the functions φ(x)sψ(x)t (0 ≤ s, t < d) and consider the
function G : (0, 1)→ R defined by

G(x) :=
d2∑
i=1

Aiθi(x),

where the Ai are integers (to be chosen later) satisfying |Ai| ≤ Hd for i = 1, . . . , d2.
Now, the point is that if β ∈ (0, 1) is such that both φ(β) and ψ(β) are rationals of height

≤ H, then either G(β) = 0 or else |G(β)| ≥ 1
H2d−2 . (Because if φ(β) = a1

b1
, ψ(β) = a2

b2
, then

G(β) = L
bd−1
1 bd−1

2

for some L ∈ Z.) So if we can choose the Ai’s so that |G(β)| < 1
H2d−2 for such β

that also satisfy |β − α| < H−20/d, then we are done: just take P (X1, X2) =
∑

0≤s<d
0≤t<d

Ad〈s,t〉eX
s
1X

t
2

(where d〈s, t〉e denotes the i such that θi(x) = φ(x)sψ(x)t). In fact, we shall choose the Ai’s so that
|G(β)| < 1

H2d−2 for all β ∈ (0, 1) with |β − α| < H−20/d. To do this, we apply Taylor’s Theorem
around α:

G(x) =

d2∑
i=1

Ai

p−1∑
j=0

θ
(j)
i (α)

j!
· (x− α)j +

θ
(p)
i (ξix)

p!
(x− α)p

 (∗)

for some ξix’s lying between α and x.

6.6 Exercise

Check that |θ(j)
i | ≤ (2d− 2)j on (0, 1) for j = 1, . . . , p and for i = 1, . . . , d2.

We first bound the remainder term in (∗):∣∣∣∣∣∣
d2∑
i=1

Ai
θ

(p)
i (ξix)

p!
(x− α)p

∣∣∣∣∣∣ .
If |x− α| < H−20/d, then using 6.6 and the bound |Ai| ≤ Hd, we see that it is at most

d2 ·Hd · (2d− 2)p ·H−20p/d.

Since 4p ≤ d2 ≤ 5p, this is bounded by

d2 · (2d− 2)d
2/4 ·H−3d

=
d2 · (2d− 2)d

2/4

Hd+2
· 1

H2d−2

≤

(
2 · (2d− 2)d/4

H

)d
· 1

H2d−2

< 1
2·H2d−2 .



We shall be done if we can choose the Ai’s so that the main term in (∗) has the same bound. By
interchanging the order of summation in (∗) we see that this main term is∣∣∣∣∣∣

p−1∑
j=0

(x− α)j

 d2∑
i=1

Ai ·
θ

(j)
i (α)

j!

∣∣∣∣∣∣ (∗∗)

This suggests applying 6.4 with ν = d2, µ = p−1, vi,j =
θ
(j)
i (α)
j! , ` = H4d, X = Hd, and u = d2 ·e2d−2,

which is justified since (by 6.6)

max
0≤j≤µ

ν∑
i=1

|vi,j | ≤ max
0≤j≤p−1

d2∑
i=1

(2d− 2)j

j!
≤ d2 · e2d−2

and
`p = H4dp ≤ Hd3 ≤ (Hd + 1)d

2
= (X + 1)ν ,

so 6.4(1), (2) both hold.
So we may indeed find integers Ai (for 1 ≤ i ≤ d2) satisfying max

1≤i≤d2
|Ai| ≤ Hd and

max
0≤j≤µ

∣∣∣∣∣∣
d2∑
i=1

Ai ·
θ

(j)
i (α)

j!

∣∣∣∣∣∣ ≤ uX

`
=
d2 · e2d−2

H3d
≤ (2e2)d

H3d
.

With this choice of the Ai’s, it follows (upon using the trivial estimate |(x − α)j | < 1) that the
main term (∗∗) is bounded (for any x ∈ (0, 1)) by

p · (2e2)d

H3d
≤
(

4e2

H

)d
· 1

2H2d−2
<

1

2 ·H2d−2
,

as required.

The first stage in the proof of 6.1 involves reducing the problem to the situation of 6.3. So
let ε > 0 be given. Let d be an integer such that d ≥ 10 and 20

d < ε
2 . Then we may choose an

integer p such that 100 ≤ 4p ≤ d2 ≤ 5p. Let f : (0, 1)→ (0, 1) be as in the hypotheses of 6.1. For
H > 4 · (2d− 2)d/4 define

SH := {〈q1, q2〉 ∈ Q2 : f(q1) = q2 and ht(〈q1, q2〉) ≤ H}

and assume, for a contradiction, that |SH | ≥ Hε for infinitely many H.
Now apply 5.11 (with n = 1) and let cε = |Φ|−1. [Note that f is now fixed and so d and p,

and hence |Φ|, depend only on ε. This is also true for f rangings over some fixed definable famliy
of functions.] Then by the Pigeon Hole Principle, there is some fixed φ ∈ Φ such that

|SH ∩ {〈φ(β), f(φ(β))〉 : β ∈ (0, 1)}| ≥ cεHε

for infinitely many H.

By subdividing (0, 1) into 1 +
[
H20/d

2

]
intervals of length at most 2 ·H−20/d, it follows, again

by the Pigeon Hole Principle, that there is some αH ∈ (0, 1) such that, setting

YH := SH ∩ {〈φ(β), f(φ(β))〉 : β ∈ (0, 1) and |αH − β| < H−20/d}



we have

|YH | ≥
cε ·Hε

1 +
[
H20/d

2

] ≥ cε ·Hε−20/d > cε ·Hε/2 (∗ ∗ ∗)

for infinitely many H.
This completes stage one.
We now apply 6.3 (with ψ = f ◦ φ) to obtain a polynomial PH(X1, X2) ∈ Z[X1, X2] (though

real coefficients actually suffice here) of degree at most d − 1 in each variable, which vanishes on
YH .

Now stage three, the final contradiction, involves what is known as ”a zero estimate” in
transcendental number theory. One requires an upper bound on the number of zeros of the function∑

0≤s,t<d
Ad〈s,t〉e · ys · f(y)t

which depends only on d (and not on the coefficients). Usually one has much more information
about the function f and good bounds (using complex analysis, say, if f is known to have an entire
analytic continuation) may be found, giving rise to much sharper bounds in place of Hε in our main
theorem here. However, for our purposes we only need to know that some such bound exists, Nd

say. For then we have our contradiction to the inequality (∗ ∗ ∗) simply by choosing H >
(
Nd
cε

)2/ε

(and H satisfying (∗ ∗ ∗)).
The existence of Nd follows from our discussion in 4.3 (see also 4.4.1(a)). Just consider the

definable family

F := {{y :
∑

0≤s,t<d
xs,t · ys · f(y)t = 0} : xs,t ∈ R for 0 ≤ s, t < d}

of subsets of R. We choose Nd greater than the number of connected components of any member
of F and observe, via 6.2(1), that such components are, in fact, singleton sets.

7 Some remarks on the proof of the general case of 1.1

7.1

One requires some deeper o-minimality theory. In particular, we require a generalization of 5.11
for definable functions F : (0, 1)n → (0, 1), and also a result telling us that in order to prove 1.1, it
is sufficient to consider the case that S is the graph of such a function.

The first and second stages of the argument discussed in section 6 may now be generalized in a
routine manner: under the assumption that graph(F ) contains more than Hε rational (n+1)-tuples
of height ≤ H, we end up with a polynomial PH(X1, . . . , Xn, Xn+1) (with integer coefficients) of
degree depending only on ε, such that at least Hεr (say) of these points lie in the set Z(PH) ∩
graph(F ), where r is a sufficiently large positive integer depending on n.

7.2

The third stage, however, requires an inductive argument for which we require a good notion of
dimension for definable sets. The proof is then completed as follows.

If, for some sufficiently large H as above, dim(Z(PH) ∩ graph(F )) = dim(graph(f)) (= n),
then it is easily shown that for some sufficiently small open box in (0, 1)n+1, ∆H say,



dim(∆H ∩ Z(PH)) = n and ∆H ∩ Z(PH) = ∆H ∩ graph(F ). Thus, graph(F ) contains the infinite
semi-algebraic set ∆H ∩ Z(PH), contrary to our assumptions.

Thus, we may assume that there are infinitely many H such that Z(PH)∩graph(F ) contains
at least Hεr rational points of height ≤ H and such that dim(Z(PH)∩graph(F )) < dim(graph(F )).
It might now appear that, by the obvious inductive argument, we have reached the desired con-
tradiction. However, the inductive hypothesis is being applied to a set, Z(PH) ∩ graph(F ), whose
definition depends on H, which is not exactly how theorem 1.1 is stated. But, as I have been
emphasizing throughout these notes, all our arguments have been uniform over definable families
and, indeed, all the sets Z(PH) ∩ graph(F ) do lie in one fixed family (depending on ε, but not on
H). So the correct formulation of 1.1 is as follows:

7.3 A uniform version of Theorem 1.1

Let {Sx̄ : x̄ ∈ Rk} be a definable family of subsets of Rn. Then for each ε > 0 there exists an
integer Dε > 0 such that for all x̄ ∈ Rk and all H ≥ Dε,

either (1)x̄ Sx̄ contains an infinite semi-algebraic subset

or (2)x̄ Sx̄ contains at most Hε rational points of height at most H.

Further, which of cases (1)x̄, (2)x̄ holds depends definably on x̄, and in case (1)x̄, the infinite semi-
algebraic subset may be chosen to depend definably on x̄.

7.4 Exercise

Check that our proof in section 6 does in fact establish 7.3 in the case that each Sx̄ is 1-dimensional.

7.5 The transcendental part of a set

The other lectures in this course will probably need a slightly different formulation of 1.1.

7.6 Definition

For S ⊆ Rn, Salg denotes the union of all infinite, connected, semi-algebraic subsets of S. We also
define Strans := S \ Salg.

Our methods also give the following version of 1.1.

7.7 Theorem

Let S ⊆ Rn be a set definable in some o-minimal expansion of the ordered field of real numbers.
Let ε > 0. Then for all sufficiently large H, Strans contains at most Hε rational points of height at
most H.

In order to complete our discussion of the proof of 1.1 it now only remains for me to indicate
the argument that establishes the general case of the reparameterization theorem.

8 Some higher-dimensional o-minimal theory

This is based on the notions of cell and cell decomposition. We treat only bounded cells here. All
definability is with respect to a fixed o-minimal expansion of the real field.



8.1 Definition

For n ≥ 1 and n ≥ m ≥ 0 we define the notion of an m-dimensional cell in Rn inductively as
follows:

(1) (i) A 0-dimensional cell in R is a singleton set {a} (for a ∈ R).

(ii) A 1-dimensional cell in R is an open interval (a, b) (for a, b ∈ R, a < b).

(2) For n ≥ 2, an (m+ 1)-dimensional cell in Rn has one of the following forms:

(i) graph(f), where f : C → R is a definable, bounded, continuous function and C is an
(m+ 1)-dimensional cell in Rn−1, or

(ii) (f, g)C := {〈x̄, y〉 ∈ Rn : x̄ ∈ C and f(x̄) < y < g(x̄)}, where f, g : C → R are
definable, bounded, continuous functions with f(x̄) < g(x̄) (for all x̄ ∈ C) and C is an
m-dimensional cell in Rn−1.

8.2 Definition

(1) A finite collection, C say, of cells in Rn (of various dimensions) is called a cell-decomposition
of (0, 1)n if it partitions (0, 1)n and, in the case that n > 1, the collection {πnn−1[C] : C ∈ C}
is a cell-decomposition of (0, 1)n−1.

(2) A cell-decomposition C of (0, 1)n is called compatible with a set B ⊂ (0, 1)n if B is the union
of a subcollection of C (i.e. for all C ∈ C, either C ⊆ B or C ∩B = ∅).

The main foundational result of the subject, due to Pillay and Steinhorn (see [PS] or [vdD]),
is the following:

8.3 Theorem (The Cell Decomposition Theorem)

Suppose that B1, . . . , Bk are definable subsets of (0, 1)n. Then there exists a cell-decomposition of
(0, 1)n that is compatible with each Bi (for i = 1, . . . , k).

8.4 Definition

The dimension of a definable set B ⊆ (0, 1)n is defined to be the largest m such that B contains
an m-dimensional cell in Rn.

8.5 Exercises

(1) Prove by induction that an m-dimensional cell in Rn is definably homeomorphic to (0, 1)m.

(2) Prove that an m-dimensional cell in Rn is open if and only if m = n.

8.6

One now shows that this notion of dimension has good properties with respect to definable sets
and definable functions. For example

dim(A ∪B) = max{dim(A),dim(B)}, dim(A×B) = dim(A) + dim(B)

dim(f [A]) ≤ dim(A), dim(Ā) = dim(A), dim(Ā \A) < dim(A)

(where we set dim(∅) := −1).



8.7

Further, for any definable map F : (0, 1)m → Rn and p ≥ 0, there exists a cell decomposition Cp
of (0, 1)m such that F is Cp on each open cell in Cp. In general, this is the best one can do: we
cannot replace Cp by C∞ here. However, in all the o-minimal structures of interest in this course
(in particular, for Aan, exp) one can replace Cp by Cω (i.e. real-analytic).

8.8

There is one further result that we need for the next section, namely the Principle of Definable
Choice. This states that if S ⊆ Rn+m is any definable set, then there exists a definable function
g : Rn → Rm such that for all x̄ ∈ Rn, if there exists ȳ ∈ Rm such that 〈x̄, ȳ〉 ∈ S, then 〈x̄, f(x̄)〉 ∈ S.

9 Reparameterization (many variable case)

I conclue these notes with a brief sketch of the proof of the following:

9.1 Theorem (The Cp-m-reparameterizaiton theorem)

Let F : (0, 1)m → (0, 1)n be any definable map. Then for any p ≥ 1, there exists a finite set Φ of Cp

maps mapping (0, 1)m to (0, 1)m, such that
⋃
φ∈Φ

Im(φ) = (0, 1)m and such that for each φ ∈ Φ and

α ∈ Nm with |α| ≤ p, we have that both ‖φ(α)‖m and ‖(F ◦ φ)(α)‖n are bounded by 1 on (0, 1)m.
(Further, |Φ| depends only on p and uniformly on F , as do the functions in Φ.)

9.2 Remarks

(1) ‖ · ‖k : Rk → R denotes the sup norm, ‖〈x1, . . . , xk〉‖k := max{|x1|, . . . , |xk|}, on Rk.

(2) We are using the usual multi-index notation: for α = 〈α1, . . . , αm〉 ∈ Nm, |α| := α1 + · · ·+αm

and, for a C |α| map f : (0, 1)m → (0, 1)`, f (α) := ∂(α)f

∂x
α1
1 ···∂x

αm
m

.

9.3

The reparameterization theorem is due, at least in the semi-algebraic case, to Yomdin and Gromov
(see [Gr]). However, the inductive part of the argument, which I now sketch, is due entirely to
Yomdin, and once one has the basics of o-minimality in place (section 8), one has to change very
little in generalizing his argument from the semi-algebraic to the o-minimal case.

Firstly (exercise), it follows quite easily by induction (using 8.7 and a Cp version of 8.5(1))
that one may assume that F (in 9.1) is already Cp on (0, 1)m. The problem is to bound the
derivatives. We may assume that m ≥ 2 (by 5.11). Let k ≥ 0.

Now assume that Φ = Φk has been found to satisfy the conclusion of 9.1 except that this
conclusion is weakened from ”for all α ∈ Nm with |α| ≤ p” to

”for all α ∈ Nm with |α| ≤ p and αm ≤ k” (∗)k

We complete the proof by showing how to construct Φk+1 to satisfy (∗)k+1. (The case k = 0
is dealt with by using a subsidiary induction on m. This involves a standard use of uniformity



(relegating the variable xm to parameter status) and is quite routine.) To this end we consider the
map F̃ : (0, 1)m → (0, 1)ñ, where ñ = |Φk|(|∆| · n+m) and where

∆ := {α = 〈α1, . . . , αm〉 ∈ Nm : |α| ≤ p− 1, |αm| ≤ k}.

The map F̃ then takes x̄ ∈ (0, 1)m to an enumeration of the values (F ◦φ)(α) for α ∈ ∆ and φ ∈ Φk

as well as φ(x̄) for φ ∈ Φk. Notice that F̃ is a C1 map and (because of the condition ”|α| ≤ p− 1”

in the definition of ∆) that ‖ ∂F̃∂xi (ā)‖ñ ≤ 1 for each i = 1, . . . ,m− 1 and ā ∈ (0, 1)m. The required
construction of Φk+1 is now easily obtained from the

Main Lemma
Let G : (0, 1)m → (0, 1)` be a definable C1 map and suppose that ‖ ∂G∂xi ‖` ≤ 1 on (0, 1)m for

i = 1, . . . ,m− 1. Then for any p ≥ 0, there exists a finite set Φ of Cp functions φ : (0, 1) → (0, 1)
with

⋃
φ∈Φ

Im(φ) = (0, 1) such that for each φ ∈ Φ and j = 0, . . . , p, |φ(j)| ≤ 1 on (0, 1) and for

each i = 1, . . . ,m, ‖ ∂
∂xi

(G ◦ φ̃)‖` ≤ 1 on (0, 1)m, where φ̃ : (0, 1)m → (0, 1)m : 〈x1, . . . , xm〉 7→
〈x1, . . . , xm−1, φ(xm)〉.
Proof sketch

I give the proof in the case that ∂G
∂xm

is bounded. (The general case follows by considering
the restriction of G to the set (η, 1 − η)m and then letting η → 0. The limiting process is quite
routine as the set Φ may be constructed uniformly in η. One also uses 4.1 here.)

So, for each xm ∈ (0, 1) we consider a point θ(xm) = 〈θ1(xm), . . . , θm−1(xm)〉 ∈ (0, 1)m−1

such that

‖ ∂G
∂xm

(θ(xm), xm)‖` ≥
1

2
sup

{
‖ ∂G
∂xm

(x′, xm)‖` : x′ ∈ (0, 1)m−1

}
(∗)

By Definable Choice (8.8) we may suppose that θ : (0, 1) → (0, 1)m−1 is definable. Apply
5.11 to the map H : (0, 1)→ (0, 1)m−1+` given by y 7→ 〈θ(y), G(θ(y), y)〉. I claim that the finite set
Φ of functions provided by 5.11 also (nearly) works here as well. For let φ ∈ Φ. We must show that

‖∂(G ◦ φ̃)

∂xm
(a′, am)‖` ≤ 1 for all 〈a′, am〉 ∈ (0, 1)m,

the other bounds being straightforward.
Now, the conclusion of 5.11 tells us, in particular, that the derivative of the map y 7→

G(θ(φ(y)), φ(y)) is bounded by 1 on (0, 1), as is the derivative of the map θ ◦ φ. Thus, for each
b ∈ (0, 1),

1 ≥ ‖
m−1∑
i=1

∂G

∂xi
(θ(φ(b)), φ(b)) · (θi ◦ φ)′(b) +

∂G

∂xm
(θ(φ(b)), φ(b)) · φ′(b)‖`

≥ ‖ ∂G
∂xm

(θ(φ(b)), φ(b)) · φ′(b)‖` − ‖
m−1∑
i=1

∂G

∂xi
(θ(φ(b)), φ(b)) · (θi ◦ φ)′(b)‖`

≥ ‖ ∂G
∂xm

(θ(φ(b)), φ(b)) · φ′(b)‖` − (m− 1).

(The last inequality follows from the above together with the Lemma hypothesis on ∂G
∂xi

for i =
1, . . . ,m− 1.)



Now let 〈a′, am〉 ∈ (0, 1)m. Then

m ≥
∥∥∥∥ ∂G∂xm (θ(φ(am)), φ(am)) · φ′(am)

∥∥∥∥
`

≥ 1

2
·
∥∥∥∥ ∂G∂xm (a′, φ(am)) · φ′(am)

∥∥∥∥
`

(by (∗))

=
1

2
·

∥∥∥∥∥∂(G ◦ φ̃)

∂xm
(a′, am)

∥∥∥∥∥
`

This gives the bound 2m instead of the required 1. However, just as in 5.11 (see the first paragraph
of the proof there), this can be easily dealt with by a suitable linear substitution.
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