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All talks take place in the Frank Adams Room of the Alan Turing Building. Please find
below the workshop time table and abstracts. A single PDF file containing all abstracts
submitted to the workshop can be found here. The workshop dinner on Tuesday evening
is booked out now. It takes place in the Japanese restaurant SAMSI on 36-38 Whitworth
Street (walkable from the Alan Turing Building).
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09:00-10:00 Martin J. Gander Yvon Maday
10:00-10:30 Coffee Coffee
Felix Kwok Olga Mula
10:30-12:00 Roman Andreev Christian Wieners
Robert Speck Stefan Findeisen
12:00-13:00 Group photo Lunch
13:00-14:00 and lunch Julien Salomon
Joerg Wensch
14:00-15:00 Michael Minion Qigi Wang
Debasmita Samaddar
Tobias Weinzierl
15:00-16:00 Closing
Uwe Kdcher
16:00-16:30 Coffee
16:30-17:30 Benjamin Ong
17:30-18:00 Georges Klein
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Abstracts for Tuesday, June 18

Chair for morning: Stefan Guttel (The University of Manchester)

9:00-9:10 Opening remarks

9:10-10:00 Martin J. Gander (University of Geneva, Switzerland)

Multiple Shooting, Parareal, Krylov Parareal, ParaExp and Space-Time Multigrid: an Overview on

Time Domain Decomposition Methods

10:30-11:00 Felix Kwok (University of Geneva, Switzerland)
Coarse Grid Correction for the Neumann-Neumann Waveform Relaxation Method

11:00-11:30 Roman Andreev (University of Maryland, USA)
Sparse space-time Petrov-Galerkin discretizations for parabolic evolution equations

11:30-12:00 Robert Speck (Julich Supercomputing Centre, Germany)
From Spectral Deferred Corrections to the Parallel Full Approximation Scheme in Space and Time

(See also the related abstract by Mathias Winkel et al.:
Muilti-level Parallel-In-Time Methods for N-body Plasma Physics Applications)

Chair for afternoon: Daniel Ruprecht (University of Lugano, Switzerland)

14:00-14:50 Michael Minion (Stanford University, USA)
Time Parallelization for Second-Order Equations

15:00-15:30 Tobias Weinzierl (Technische Universitat Miinchen, Germany)
Parallel Space-time Spacetrees for Simple Parabolic Benchmarks

15:30-16:00 Uwe Kdcher (Helmut Schmidt University Hamburg, Germany)
Parallel variational space—time methods for the wave equation

16:30-17:20 Benjamin Ong (Michigan State University, USA)
RIDC-DD: A parallel space-time algorithm

17:30-18:00 Georges Klein (University of Oxford, UK)
Deferred correction from equispaced data based on effcient high-order rational integration
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Abstracts for Wednesday, June 19

Chair for morning: Debasmita Samaddar (Culham Science Centre, UK)

9:00-9:50 Yvon Maday (Université Pierre et Marie Curie, France)
Conservations with parareal in time algorithm

10:30-11:00 Olga Mula (Université Pierre et Marie Curie, France)
MINARET: Towards a time-dependent neutron transport parallel solver

11:00-11:30 Christian Wieners (Karlsruhe Institute of Technology, Germany)
Space-Time Methods for Wave Equations

11:30-12:00 Stefan Findeisen (Karlsruhe Institute of Technology, Germany)

First step towards Parallel and Adaptive Computation of Maxwell's Equations

Chair for afternoon: Felix Kwok (University of Geneva, Switzerland)

13:00-13:30 Julien Salomon (Universite Paris-Dauphine, France)
An intermediate state method for the time-parallelized solving of optimal control problems

13:30-14:00 Joerg Wensch (TU Dresden, Germany)
Multirate time integration of the Euler equations

14:00-14:30 Qiqi Wang (Massachusetts Institute of Technology, USA)
Towards Scalable Parallel Long Time Integration of Chaotic Dynamical Systems

14:30-15:00 Debasmita Samaddar (Culham Science Centre, UK)
Temporal parallelization of advanced operation scenario simulations of fusion plasma
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Martin J. Gander
University of Geneva

Multiple Shooting, Parareal, Krylov Parareal, ParaExp and Space-Time
Multigrid: an Overview on Time Domain Decomposition Methods

Many problems in science and engineering are time dependent, and time
stepping methods are used to obtain approximate solutions. If the
problems are large scale, or solutions are needed in real time, it is
necessary to use the computing power of parallel computers. The
classical strategy to parallelize time integration is to parallelize
the solution at each time step, and to advance sequentially from time
step to time step. This approach however neglects an entire dimension,
the time dimension, which could also be used for the parallelization.
In contrast to the spatial dimensions, the time dimension has however
a direction: the solution later in time depends only on the solution
earlier in time, and not vice versa. It therefore seems difficult to
do useful computations at a future time step, before the present time
step results are known.

There are several algorithms which nevertheless try to do useful
computations later in time, before fully accurate results at the
present time step are available, and one of the more recent ones is
based on multiple shooting: the parareal algorithm. This algorithm is
using an approximation of the Jacobian on a coarse grid in the Newton
iteration classically used for solving the shooting equations. After
reviewing a compact convergence result for this algorithm, I will
illustrate its numerical performance for several examples of systems
of ordinary and partial differential equations. These examples reveal
that while the algorithm performs well for diffusive problems,
convergence is unsatisfactory for hyperbolic equations. I will then
explain as possible remedies for this problem the Krylov parareal
algorithm, and also a different time parallel method called ParaExp.
I will finally show two further developments, a space-time algorithm
based entirely on multigrid techniques, and a space-time algorithm
based on space-time domain decomposition.



Coarse Grid Correction for the Neumann—Neumann
Waveform Relaxation Method

Felix Kwok
University of Geneva
felix. kwok@unige.ch

Abstract

In the recent paper [2], a new variant of the waveform relaxation (WR) method
based on Neumann—Neumann iterations has been proposed for the solution of
linear parabolic PDEs. Just like for the steady case, one step of the method
consists of solving the subdomain problems using Dirichlet traces, followed by a
correction step involving Neumann interface conditions. However, each subdo-
main problem is now in both space and time, and the interface data to be ex-
changed are also functions of time. One advantage of the WR framework is that
it allows the use of different spatial and time discretizations for each subdomain.
Moreover, it has been shown in [1] that for finite time intervals, the Neumann-
Neumann waveform relaxation (NNWR) method converges superlinearly both
in one spatial dimension and for 2D decompositions into strips. Unfortunately,
convergence deteriorates significantly as the number of subdomain increases,
since the method does not allow communication between far-away subdomains.

The goal of this talk is to introduce a coarse grid component to the NNWR
method in order to make it scalable with respect to the number of subdomains.
In 1D, an exact coarse grid correction can be calculated by considering shape
functions that satisfy the homogeneous PDE; this yields an iteration that con-
verges to the exact solution in two steps. In 2D, however, the exact coarse grid
correction yields a matrix problem that is too large and dense to be of practi-
cal value. Thus, we must seek corrections in a smaller subspace, consisting of
coarse hat functions or discontinuous piecewise linear elements. We analyze the
convergence of the method for different choices of coarse spaces and show its
scaling behaviour when we vary the number of subdomains.

This is joint work with Martin J. Gander, Sébastien Loisel and Kévin Santugini.

References

[1] M. J. Gander, F. Kwok, and B. C. Mandal. Dirichlet-Neumann and
Neumann—Neumann waveform relaxation methods for the time-dependent
heat equation. In preparation.

[2] F. Kwok. Neumann-Neumann waveform relaxation for the time-dependent
heat equation. Submitted to the Proceedings of the 21st International Con-
ference on Domain Decomposition Methods, 2012.



Sparse space-time Petrov-Galerkin discretizations for parabolic evolution equations
Roman Andreev (CSCAMM, University of Maryland, andreevr@umd.edu)

In view of applications such as optimal control problems with parabolic PDE constraints and mas-
sively parallel computations of time-dependent problems, space-time compressive discretizations of
parabolic evolution equations are of significant interest.

We discuss space-time (sparse) tensor product simultaneous Petrov-Galerkin discretizations of
parabolic evolution equations, and propose efficient preconditioners for the iterative solution of
the resulting single linear system of equations. Therein, space-time stability of the discretization,
i.e., the validity of the discrete inf-sup condition with respect to suitable space-time norms uniformly
in the discretization parameters, is essential.

Viewing the Crank-Nicolson time-stepping scheme as a space-time Petrov-Galerkin discretization,
we can show that it is conditionally space-time stable for those space-time norms. This motivates
a general minimal residual Petrov-Galerkin discretization framework along with space-time stable
families of trial and test spaces of (sparse) tensor product type, resulting in space-time compressive
discretization algorithms.

Additional interesting properties of the proposed algorithm include: very low regularity require-
ments on the input data; modularity in the spatial discretization; possibility of high-order nonuni-
form temporal discretization. Several natural questions, such as the validity of the maximum
principle, and incorporation of space-time adaptivity while maintaining stability, are open.

References:
For a condensed description and a basic Matlab implementation of the algorithm see:

Space-time discretization of the heat equation. A concise Matlab implementation.
eprint arXiv:1212.6037 (includes code), 2012 — WWW: http://arxiv.org/abs/1212.6037

The essentials of the theoretical background and some numerical results are given in:

Stability of sparse space-time finite element discretizations of linear parabolic evolution equations.
IMA J Numer Anal (2013) 33(1): 242-260 — DOI: 10.1093/imanum /drs014

Further details and extensions are discussed in:

Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations.

PhD thesis, ETH Zurich, ETH Diss No 20842, 2012 — DOI: 10.3929/ethz-a-007563932
and

R.A. and C. Tobler: Multilevel preconditioning and low rank tensor iteration for space-time simul-
taneous discretizations of parabolic PDFEs.

SAM report 2012-16. ETH Ziirich, 2012 — WWW: http://www.sam.math.ethz.ch /sam_reports
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From Spectral Deferred Corrections to the Parallel Full
Approximation Scheme in Space and Time

(A summary of recent work)

R. Speck*T, D. RuprechtT, M. Emmettt,

M. Minionf, M. Bolten¥ R. Krause!,

*Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Germany.
TInstitute of Computational Science, Universita della Svizzera italiana, Switzerland.
tCenter for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, USA.
sInstitute for Computational and Mathematical Engineering, Stanford University, USA.
Department of Mathematics, Bergische Universitit Wuppertal, Germany.

I. INTRODUCTION

A recently developed time-parallel method is the parallel full ap-
proximation scheme in space and time” (PFASST) introduced in [1],
[2]. It is based on spectral deferred correction methods (SDC) [3], a
class of methods that iteratively uses low order methods to obtain an
overall method of high order of accuracy. By intertwining the SDC
iterations with a Parareal-like iteration (see [4] for Parareal), PFASST
features an improved bound on parallel efficiency. The efficacy of
PFASST in extreme-scale parallel simulations on a BlueGene/P has
been demonstrated in [5].

II. SDC, MULTI-LEVEL SDC AND PFASST

Below, first the time-serial single level spectral deferred corrections
method is described briefly. Then, the time-serial, multi-level SDC
(MLSDC) approach is discussed. Finally, the time-parallel, multi-
level PFASST algorithm is sketched.

A. Spectral deferred corrections (SDC)

The SDC method introduced in [3] is an iterative approach to
compute a solution of a collocation formula. Given a time-step
[T, Trt1], denote by T, < to < ... < tm < Thy1 a set of
intermediate Gauf3 collocation points. Typically, Gaul3-Lobatto nodes
are used, so that T, = to and Tv41 = tnr. Integrating an initial
value problem from 7}, to 7,41 is then equivalent to solving the
Picard formulation

u(t) = un +/ " flu(r),7) dr. (€))

Approximating (1) with a quadrature rule with nodes ¢,, results in a
linear or nonlinear system of equations (depending on the problem)
to be solved for the coefficients of the collocation polynomial. Instead
of solving the full system directly, SDC proceeds iteratively using so-
called “sweeps” of a low order integration method, typically forward
or backward Euler. For a backward Euler, the sweeps are of the form

UREY = UL + At (FUREY) = F(UR1)) + Sk @)

Here, the operator S¥, approximates the Picard integral from t,, to
tm-+1, that is

~
~

sk / T b (), 1) d 3)

m

If the iteration converges, the term f(UF1Y) — f(UF, ;) vanishes
and (2) for m =0,..., M — 1 can be combined into

M-—1
k+1 k
o+ 5 S

m=0

which is precisely the collocation approximation of (1).

k+1
Uy~ =
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B. Multi-level spectral deferred corrections

In [6], a multi-level SDC method (MLSDC) is presented, that
in a certain sense provides the “missing link” between single-level,
time-serial SDC and multi-level, time-parallel PFASST. In contrast
to SDC, MLSDC performs sweeps not on a single level but on
a hierarchy of levels, where higher levels use fewer collocations
nodes and therefore a coarsened temporal discretization. A FAS
correction is employed in order to ensure information is properly
transferred between levels. It is shown in [6] that MLSDC provides
the same accuracy as SDC, minimally improved stability and that it
can reduce the number of iterations required for convergence. Also,
the incorporation of weighting matrices required e.g. for the use of
compact finite difference stencils is explained. Here, the SDC sweep
equation as well as the FAS correction need to be modified to achieve
higher-order discretizations in space.

In order to reduce the computational cost of MLSDC at coarser
levels, multiple strategies are presented to also coarsen the spatial
discretization on the higher levels of the hierarchy:

« Reduced spatial resolution

« Reduced order discretization
o Reduced implicit solve

o Reduced physics

The first two strategies are subsequently investigated in detail for
a linear advection-diffusion problem, nonlinear viscous Burgers’
equation and a shear layer instability described by the Navier-Stokes
equations in vorticity-velocity formulation, see Section III for a
tentative summary of the last problem.

One key advantage of MLSDC is that it can be parallelized in time,
leading to the parallel full approximation scheme in space and time”
(PFASST) described below in Subsection II-C. Besides providing the
possibility to parallelize in time, however, MLSDC is also of interest
in its own right: It provides a starting point to extend it to a full space-
time multi-grid method and thus enables a completely new approach
to the field of space-time parallel multi-grid methods as studied e.g.
in [7], [8].

C. PFASST

The PFASST method is pioneered in [1]. In [2], it is introduced in
its ultimate form and its performance is studied for viscous Burgers’
equation and the Kuramoto-Silvashinsky equation. PFASST basically
corresponds to a number of concurrent MLSDC iterations running
for multiple time intervals assigned to different processors plus a
frequent exchange of updated values. PFASST employs SDC sweeps
on multiple levels and uses a FAS correction as well to efficiently
transfer information between levels. In particular, the FAS correction
also allows for efficient use of different spatial coarsening strategies
very similar to the MLSDC approach. Furthermore, to optimize
efficiency and reduce overhead from the coarse level sweeps, PFASST
features a pipelining strategy, see [1].
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Fig. 1: Vorticity w at ¢ = 1.0 in the shear layer instability example on three levels of a MLSDC hierarchy. The coarse level shows clear
signs of underresolution like oscillations in the trailing tails of the vortical structures. MLSDC performs 256 time-steps in this example and
requires on average 6.9 iterations on each time-step to converge to a tolerance of 10~ 2,

By intertwining the SDC sweeps on the different levels with the
outer iteration, PFASST manages to achieve an improved bound on
parallel efficiency compared to plain Parareal. Denote by Pr the
number of processors, by K the number of sweeps of the underlying
SDC scheme, by « the ratio of the execution time of one coarse to
one fine sweep and by K, the number of PFASST iterations. The
speedup provided by PFASST then reads

Pk, _ K.
Pra+ K, (1+a) — Kp

Note how strategies to reduce the overhead of coarse level evaluations
in MLSDC directly translate into strategies to reduce « and thus
improve the speedup provided by PFASST. The potential of PFASST
to extend the strong scaling limit of the N-body tree-code PEPC [9]
in extreme-scale parallel simulations has been demonstrated in [5],
where timing result from runs on up to 262,144 processors on a
BlueGene/P system are presented. There, in order to optimize «, a
tree-code specific coarsening criterion was developed that roughly
corresponds to “reduced order in space”. An accuracy study accom-
panying the performance study and discussing the accuracy of SDC
and PFASST in combination with an N-body solver can be found
in [10].

S(Pr,a) = Pr. (5)

III. EXAMPLE

One example studied in [6] is the performance of MLSDC for a
2D shear layer instability. A tentative summary is given here. The
problem is described by the Navier-Stokes equations in vorticity-
velocity formulation

wt +u-Vw=rvAw (6)

with velocity v and vorticity w = V X u. The computational domain
[0,1]% is assumed to be periodic in both directions and the initial
velocity field is given by

ul(z,y) = —1.0 + tanh(p(0.75 — y)) + tanh(p(y — 0.25)) (7)
u3(z,y) = —dsin(27 (2 + 0.25)), ®)

corresponding to two shear layers at y = 0.25 and y = 0.75 with a
thickness parameter p = 50 and an initial disturbance in velocity of
amplitude § = 0.05. MLSDC uses an IMEX-type sweep, where the
advection of vorticity is treated explicitly while the diffusive term is
treated implicitly. Three levels are used and both the medium and the
coarse level feature a reduced resolution in space and reduced order
of the spatial discretization in addition to the reduced number of
collocation points, see Figure 1 for the exact values. Despite the fact
that clear signs of under-resolution are present on the coarse level, the
MLSDC iteration converges quickly and robustly and also conserves

total vorticity. The Poisson problems arising from the implicit part
of the IMEX scheme and during the recovery of the vorticity field
from a solenoidal stream function are solved using a the multi-grid
method PMG [11]. In the current version, the linear problems are
always solved to full accuracy and the strategy of using a “reduced
implicit solve” to coarsen in space has not yet been investigated.

IV. OUTLOOK

In the talk, we will provide an overview of the results on MLSDC
in [6]. We will also present first results of incorporating the third
coarsening strategy, using a “reduced implicit solve” for the implicit
part on coarser levels. Further, the connection of MLSDC and
PFASST will be illustrated. Studies comparable to the ones conducted
for MLSDC will be conducted with PFASST, in order to provide a
detailed assessment of the differences between time-serial MLSDC
and time-parallel PFASST.
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Multi-level Parallel-In-Time Methods for
N-body Plasma Physics Applications

(Prospect on upcoming work)

M. Winkel*, R. Speck*, D. Ruprechtf, P Gibbon*
*Jiilich Supercomputing Centre, Jiilich, Germany.
TInstitute of Computational Science, Universita della Svizzera italiana, Lugano, Switzerland.

I. INTRODUCTION

Parallel-in-time integration methods are a promising approach to
extend strong-scaling limits of simulation code at large-scales. With
fixed degrees-of-freedom in space and million-way concurrency at
hand, classical space-parallel strategies inevitably lead to inefficient
use of compute power as strong-scaling saturates. In this contribution,
we will describe the ongoing transition from a large-scale, space-
parallel simulation code towards a space-time parallel method ready
for extreme-scales. To this end, we will join the space-parallel
Barnes-Hut tree code PEPC [1] with the time-parallelization library
PFASST [2].

II. LIMITS OF PARALLELIZATION USING MULTIPOLE-BASED FAST
SUMMATION SCHEMES

Being dominated by more than 20 Petaflop-class installations, the
Top500 list of world’s most powerful computers is the evidence
of a tremendous upgrade in worldwide computing power.However,
this does not solve two very principal problems of all particle-based
molecular dynamics simulations. Following Newtonian dynamics, the
particle’s movement in these simulations is driven by forces from
interaction with each of the individual particles. For example, in the
electrostatic case, these are mediated through the Coulomb force

T — T <
F({Fab{f N }) = quq] Y + P (1)
< P =T
=
acting from N particles 7i..n € R? with charges ¢i..n € R onto

particle 7 with charge ¢; at 7;. In addition, usually external forces
Flext) = ﬁ(eXt)(ﬂ,ﬁi,t) are present that — besides the particle’s
position 7; — can in general also depend on its velocity ©; = 7 (e.g.
Lorentz force on particles in an external magnetic field) and time ¢
(e.g. in laser-driven systems).

A direct evaluation of (1) for all particles ¢ = 1... N exhibits
a computational complexity of (O(N?) that for ever increasing
simulation size and thus particle numbers cannot be dealt with by
means of simply increasing computation power. Instead, efficient
fast summation schemes such as the Barnes-Hut tree code [3] and
the Fast Multipole Method [4] have been developed. They rely
on a multipole-based approach to replace the interactions between
individual particles with interactions between particles and particle
groups via their multipole expansion. Thus, the contribution of
distant particles is approximated by systematically grouping them
into clusters and representing their charge distribution through a
series expansion. The coarseness of the spatial approximation can
be adjusted through a so-called multipole-acceptance-parameter that
determines which sizes of particle groups at which distance are to
be accepted as interaction partners. Thus, an overall complexity of
O(Nlog N) or even O(N) can be achieved [5].

During the last years, a highly scalable hybrid parallelized imple-
mentation of the original Barnes-Hut tree algorithm using MPI and
Pthreads has been developed at Jiilich Supercomputing Centre under
the label Pretty Efficient Parallel Coulomb solver (PEPC) [1].
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Today, it is not only limited to pure Coulomb interaction but
includes numerous interaction-specific backends and respective fron-
tends. Applications are reaching from simulation of interstellar dust
dynamics, plasma boundary layer instabilities, laser-driven plasmas
and plasma-wall interactions in fusion vessels to hydrodynamics
applications with the SPH or the vortex-particle method.! PEPC
uses a work separation scheme between one communicator thread
performing rapid low-latency point-to-point communication for tree
node exchange and an adjustable number of worker threads that are
responsible for tree structure interpretation and force evaluation on
every shared-memory node. For large systems with N = 32...2,048
million particles, efficient scalability across 294,912 processors of the
Blue Gene/P system JUGENE at JSC has been shown recently [1].
However, the inevitably synchronized collective tree construction
phase as well as point-to-point communication during tree traversal
are becoming dominant as the number of particles N per processor
core C falls below % < 2,000. Thus, for smaller problem sizes, the
algorithm’s efficient operating point is limited to small supercomputer
partitions, leading to a strong lower limit for the time-to-solution
that is achievable. This strong-scaling limit is the second issue
experienced by all parallel particle-based simulation methods. Their
parallel scaling is intrinsically constrained and saturates as soon as
the number of particles per processor is becoming too low.

III. CONNECTING PEPC 1O PFASST

Instead of decreasing % any further, the additional direction
of parallelization offered by parallel-in-time methods provides an
appealing possibility to further reduce time-to-solution.

In a previous study, we already applied the Parallel Full Approx-
imation Scheme in Space and Time (PFASST) [6], [2] to PEPC,
making use of two different levels of spatial discretization [7], [8].

PFASST is an iterative parallel-in-time solver which bases on a
coupling of Parareal iterations [9] with the sweeps of a multi-level
spectral deferred correction method (MLSDC, see [10], [11]). Similar
to Parareal, it profits from decreasing the runtime of the coarse
scheme by not only coarsening in time but also using a coarser
spatial discretization. PFASST further improves this strategy by using
a full approximation scheme (FAS) technique to recycle coarse grid
information efficiently and to increase the accuracy of the coarse
grid SDC sweeps. While coarsening in time can be easily obtained
in PFASST by using less intermediate collocation points, efficient
and effective strategies for spatial coarsening are an area of active
research.

With its multipole-acceptance-parameter, the Barnes-Hut approach
as used in PEPC already offers a convenient possibility to choose
between fast, inaccurate force computation for the serial initial value
propagation and a precise but slow evaluation for the parallel fine
propagator. This strategy is similar to the operator-based coarsening
strategy described in [11]. Another approach sketched in [11] but not
investigated there is the implementation of different physics on both
levels, which is envisaged in the current project. For the coarse level

Uhttp://www.fz-juelich.de/ias/jsc/pepc



an adiabatic approximation, i.e. decoupling of electronic and ionic
motion in plasma simulations, seems natural at least for moderate and
weak coupling between the species. Thus, the ions will for example
move in front of an electronic background with reduced dynamics. On
the fine level, the full electron dynamics will be taken into account.
For PEPC, this will go beyond the previously used simple approach
and has the potential to further promote parallel molecular dynamics
simulations at their strong scaling limit. Thus it will be possible to
study previously strictly separated time scales in a consistent model
within one simulation.

IV. COARSENING VIA REDUCED PHYSICS FOR
PLASMA-PHYSICAL APPLICATIONS

The field of plasma physics comprises a broad range of physical
configurations as the presence of free charges is common to a multi-
tude of physical regimes. From the cold and ultra-thin interstellar
matter to high densities in bulk metals and high temperatures in
fusion reactions, densities of 107> to 10%® particles per cm® and
temperatures from 1072 to 10'° K are covered.

The relevance of mutual interactions in the system is characterized

. Coul R . .

by the coupling parameter I' = % which is the ratio of
2

(Coulomb) interaction energy E(C°") = 47;150‘ - to thermal energy

_1
E(herm) — kpT. Here, d = (47n) ? is the average interparticle

distance, n the particle’s numbe;s density, 7" their temperature, ¢ the
vacuum permittivity, and kg Boltzman’s constant.

For systems of low density or high temperature, i.e. I' < 1, the
system can be treated as an ideal gas. Approaching I’ < 1, a rigorous
perturbation theoretical treatment that includes particle interactions in
lower orders has been proven successful, see e.g. [12] for a review.
However, for stronger coupling I' 2 1, matter is approaching fluid
and finally solid state and these methods fail as — with the exception
of regular lattices — the emerging correlated structure cannot be
expressed analytically.

In this regime, numerical methods such as molecular dynamics
simulations are today’s methods of choice to proceed towards study-
ing cold and dense plasmas. However, the constituent particles —
usually negatively charged electrons and positively charged ions —
do not only differ in charge but also carry considerably different
masses. This introduces very different dynamic time scales as the
mass ratio between electrons and protons % ~ 1836 is a lower
bound for m%‘;“. For accurately resolving dyﬁamics on all relevant
scales, short physical time steps and thus long total simulation times
are equally necessary.

In order to further extend the approach of combining the large-
scale spatial parallelization of PEPC with the parallel-in-time method
PFASST, we want to make use of this vast dynamic range of time
scales for the particle species by decoupling electronic and ionic
motion. To this end, the coarse level will fully resolve slow processes
while fast dynamics is treated in an averaged or simplified model.
The fine level will include full dynamics for slow and rapidly moving
particle species.

Among others, the following three applications seem to provide an
ideal setup for upcoming studies:

A. Laser-driven ion acceleration. In laser-driven ion accelera-
tion, usually charged particles are expelled from a micrometer-sized
metallic target by a strong external field. Using an appropriate
configuration of laser and target parameters, good directionality of
the escaping particles can be achieved. The interaction between
travelling ions and electrons is expected to keep the particle bunches
compact after leaving the target. Beam propagation outside the target
requires long-running open-boundary simulations that have to resolve
the dynamics of the electronic and the ionic subsystem, which is
currently impossible for the real physical mass ratio given above.

Here, electrons can for example be treated as a single charge cloud
on the coarse level.

B. Instabilities at a plasma-vacuum boundary for magnetized sys-
tems. Due to thermally driven charge separation at a plasma-vacuum
interface and the E x B drift resulting from the restoring motion,
instabilities can emerge at a plasma-vacuum interface in an external
magnetic field. These are currently studied using a two-dimensional
simulation with PEPC with the constraint of resolving the gyro-
motion of electrons only as the period of the cyclotron motion scales
with the particles mass. To sufficiently include ionic gyration that will
presumably have considerable influence onto the instability pattern
structure, much longer simulation times than currently reachable
would be necessary. Here, on the coarse propagator level a guiding-
center movement for the rapid electron gyration can be used to allow
for larger timesteps and progress of the ionic motion. On the fine
level, fully resolved dynamics will include electronic gyration.

C. Optical and transport properties in strongly correlated media.
Optical properties such as the dielectric function that finally describes
propagation of electromagnetic waves inside matter is primarily
governed by the rapidly moving quasi-free electrons. However, their
trajectories and collision rates strongly depend on the ionic structure
and the correlations between electrons and ions. The preparation of
strongly correlated, i.e. cold high-density systems in simulations is
difficult, though. The formation of long-range structures at phase
transitions from gaseous via liquid to bulk state is a slow process
as the ions involved are rather heavy. Again, using a parallel-in-time
approach for finally resolving both — fast and slow dynamics — will
improve our understanding of these phase transitions, the resulting
structures and finally optical properties of strongly correlated media.

The projected combination of PFASST and PEPC with spatial
coarsening via a reduced physics approach will not only boost these
plasma physics applications. It will also be an important cornerstone
towards efficiently utilizing the ever-increasing computational power
of today’s supercomputers and their even more powerful successors
and will thus pave the ground for even shorter time-to-solution.
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Time Parallelization for Second-Order Equations

Michael Minion
Stanford University

This talk will discuss recent work on extending the parallel full
approximation scheme in space and time (PFASST) to second-order
differential equations, in particular Hamiltonian systems.

I will present a new variant of spectral deferred corrections
appropriate for second-order equations and discuss options for
generating a hierarchy of time-space problems to increase the
parallel efficiency of PFASST. I will also discuss some recent
progress on applying these ideas to molecular dynamics simulations
using the OpenMM framework.
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Space-time schemes for parabolic partial differential equations (PDEs)
promise advantages compared to traditional time stepping: First guesses of the
solution’s evolution in time are delivered quickly (an important ingredient for
computational steering or interactive computing), periodic boundary conditions
are straightforward to implement (important for steady cycle systems), backward
problems interacting with the PDE can be solved directly (important for optimi-
sation and calibration based upon the adjoint), and so forth [4]. The most promi-
nent selling points of space-time however are the increased level of concurrency
and superconvergence exploiting solution smoothness in time (see for example
[1] for historic remarks). All these properties render space-time a promising can-
didate for the dawning exascale age.

Three major showstoppers for space-time meshings do exist: memory, efficient
solvers, and software complexity. We propose to pick up the concept of space-
trees, a generalisation of the well-known quadtree/octree concept for two and
three dimensions, to use three-partitioning, and to apply it to a four-dimensional
space-time setting: here, a bounded space-time domain is embedded into a 4d-
hypercube. This cube then is cut into 3* equally-sized subcubes®. The process
continues recursively and yields a cascade of adaptive Cartesian grids. Such grids
can be traversed and serialised along a space-filling curve and thus stored effi-
ciently with basically one bit per vertex [2,5]. Such a grid cascade delivers a
multiscale representation of the computational domain well-suited for geometric
multigrid solvers. Such a grid finally has simple tensor-product structure. Exist-
ing solvers for Cartesian meshes with standard single step time integration can
straightforwardly be rewritten as space-time code.

The present talk studies a plain geometric multigrid solver acting on the
space-time domain, and it discusses some of the space-time advantages: We ob-
serve that the spacetree’s adaptivity in both space and time can, if multiple snap-
shots at different time steps have to be held anyway, coarse more aggressively
than time stepping and provide a nice framework to realise local time stepping in
combination with dynamic adaptivity in space. We observe that the spacetree’s
multiscale data structure can, in combination with a full approximation stor-
age scheme, yield first guesses of the solution quickly and, in accordance with
textbook knowledge, superconverge. We observe that the additional temporal

! The factor three results from the use of the PDE framework Peano [3] as software
base.



degree of freedom increases the concurrency. Different to traditional approaches,
the spacetree allows us to distribute not only time slices or follow a spatial do-
main decomposition, but it facilitates to deploy whole space-time subdomains
to different ranks. However, the load balancing for such a data structure is del-
icate, the adaptivity in time interplays with the communication and data flow,
the h-adaptivity of the spacetree suffers from a lack of accuracy at the domain
boundaries due to the O(h) accuracy, and so forth. Some of these issues and
potential solutions are addressed and sketched.
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Abstract

The accurate and reliable numerical approximation of
the hyperbolic wave equation is of fundamental impor-
tance to the simulation of acoustic, electromagnetic and
elastic wave propagation phenomena. Here, we present
families of variational space—time discretisation meth-
ods of higher order for the acoustic wave equation
as a protoype model for the three-dimensional elas-
tic wave equation. In temporal domain we present two
families of continuous and discontinuous discretisation
schemes. For the spatial discretisation a symmetric in-
terior penalty discontinuous Galerkin method is used.
From these classes of uniform Galerkin discretisations
in space and time an approach of fourth-order accuracy
is analysed carefully. The efficient solution of the re-
sulting block-matrix system and inherently parallel nu-
merical simulation through domain decomposition is
adressed. The performance properties of the schemes
are illustrated by sophisticated and challenging numer-
ical experiments with complex wave propagation phe-
nomena in heterogeneous media.

1 Motivation

Our interest in developing numerical approximation
schemes of higher order accuracy for the wave equation
comes from mechanical engineering. Multiple layer
fibre reinforced composites have become one of the
most promising materials to build light-weight struc-
tures for several fields of application, for instance in
aerospace and automotive fields. These composites are
able to combine high strength and rigidity of the re-
inforced fiber with excellent properties of synthetic
resins in best possible way. Nondestructive material in-
spection by piezoelectric induced ultrasonic waves is
a relatively new and challenging technique to monitor
the healthiness of such components. Several material
damages (delamination of layers, matrix cracks, fibre
breaks) may occur and have to be detected by some
autonomous structural health monitoring system. For
the design of structural health monitoring systems it

is strictly necessary to understand phenomenologically
and quantitatively wave propagation in layered fibre re-
inforced composites and the influence of the geometri-
cal and mechanical properties of the system structure.
Numerical simulation is a promising way to achieve
this goal; cf. [2] and Fig. 1. Therefore, the ability to
solve numerically the wave equation in three space di-
mensions is particularly important from the point of
view of physical realism. However, this is still a chal-
lenging task and an active area of research.

Figure 1: Ultrasonic waves in carbon fibre composite.

2 Introduction to variational space—time methods

In the field of numerical wave propagation the spatial
discretisation by some discontinuous Galerkin finite el-
ement method (DGM) has attracted the interest of re-
searchers; cf., e.g. [4]. Advantages of the FEM are the
flexibility with which it can accommodate discontinu-
ities in the model, material parameters and boundary
conditions and the ability to approximate the wavefield
with high degree polynomials. The spatial DGM has
the further advantage that it can accomodate disconti-
nuities also in the wavefield, it can be energy conser-
vative, and it is suitable for inherently parallel simula-
tions. The mass matrix of the spatial DGM is block-
diagonal, where each block size coincides with the de-
grees of freedom of the associated element, such that
its inverse is available at very low computational cost.
Recently, variational space—time discretisation schemes
were proposed and studied for the parabolic heat equa-
tion and for systems of ordinary differential equations
[3]. In this contribution we will focus on the pre-
sentation of continuous and discontinuous variational
temporal discretisation schemes from the variational



space—time approach for the hyperbolic wave equa-
tion. For the spatial discretisation a symmetric interior
penalty discontinuous Galerkin method is used; cf. [4].

From these families of uniform variational discretisa-
tions a scheme of fourth order accuracy with respect to
the temporal and spatial variables is studied carefully.
It will be shown that the block-diagonal structure of the
spatial mass matrix, resulting from the discontinuous
Galerkin approach, can be used to decouple efficiently
the arising temporal block linear system. The perfor-
mance properties and computational cost of the numer-
ical scheme are illustrated by some numerical conver-
gence studies. Moreover, the schemes are applied to
wave propagation phenomena in heterogeneous media
admitting mutiple sharp wave fronts; cf. [1] and Fig. 2.

Figure 2: Inherently parallel acoustic wave simulation.

3 Temporal discretisation schemes

Exemplarily, our family of continuous-in-time varia-
tional discretisation schemes for the wave equation

p(@) o v(,t) + a(u(z, 1)) = f(z,1),
Oru(z,t) —v(x,t) =0,

written as velocity-displacement formulation and
equipped with initial conditions u(0) = wuo, v(0) =
vo and homogeneous Dirichlet boundary conditions, is
presented here. For the discontinuous-in-time counter-
part of this approach we refer to [1].

ey

We decompose I = (0,77 into N subintervals I,, =
(tn—1,tn]. For some Hilbert space H, let

Xi(H)={ueC(I, H): u|r, € P.(In, H)},
V' (H)={we L*(I, H) : wlr, € Pr_1(In, H)},

P.(I,,H) = {u I, - H: u=2§z0 §T7L t-j,ﬁfl € H}.

Our continuous-in-time variational approximation of
(1) then reads as: Find u, € XE(I,H}(Q)), v, €
XL (I, L%(Q)), such that u,(0) =ug, v,(0) =vy and

JT{ (Orvr, @7)  + a(u77ﬁ)\7)}dt _ j

0 0

fT{ (r1t7. 5, ) — (o757 o}t = 0

0

T

(f,0r)odt

for all ©; € Y"(HL(Q)) and @, € YT (L?(2)). Here,
(-,-)q denotes the L?(?) inner product. Precisely, we
have a temporal Galerkin-Petrov method, since the
trial and test spaces do not coincide. Since the test
space imposes no continuity constraints between ele-
ments, we can rewrite the problem as time marching
scheme. Finally, we apply an interior penalty discon-
tinuous Galerkin method in spatial domain and call this
approach a cGP(r)-dG(p) method. We obtain the Crank-
Nicolson scheme for » = 1 and for » > 2 we observe
superconvergence in the integration points, cf. [1, 3].

4 Future Prospects

By using variational space—time methods for the dis-
cretisation of the wave equation we have a uniform
variational approach in space and time which may be
advantageous for the future analysis of the fully dis-
crete problem and the construction of simultaneous
space—time adaptive methods. Further, it is very natural
to construct temporal methods of even higher order then
presented here. The well-known finite element stability
concepts of the temporal Galerkin-Petrov or discontin-
uous Galerkin methods can be used to obtain at least
A-stable methods. For future developments, the well-
known adaptive finite element techniques can be ap-
plied for changing the polynomial degree and the length
of the time steps, cf. [3, 6, 5].
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We present recent efforts to develop fully parallel space-time algorithms, which will improve
the fidelity and scalability of numerical simulations across many areas in computational science.
Our approach combines Revisionist Integral Defect Correction (RIDC) methods [2, 3], a family of
time-parallel integrators, with Domain Decomposition (DD) methods [6, 5], an approach to split
boundary value problems into smaller boundary value problems on sub-domains and iterating
to coordinate the solution between adjacent sub-domains. The basic idea is as follows: while a
set of IV processing cores are computing a low-order approximation to the domain-decomposed
solution at time t", additional sets of N cores are simultaneously computing corrections to the
low(er)-order approximations at time ¢, where m < n.

Consider the general problem of interest:

u = L(t,u), xe€Qx][0,T] (1a)
B(t,u) =0, x€dx][0,T] (1b)
u(0,z) = g(x), x €. (1c)

Denote an approximate solution to (1) as n(¢, x), and the residual as €(t,z) = m — L(¢,m). Then,
the following correction PDE can be derived,

{e —I—/O (T, x) dT]t =L(t,n+e)—L(t,n), xe€Qx][0,T] (2a)
e(t,z) =0, x€0Qx][0,T) (2b)
e(0,z) =0, =z€Q, (2¢)

where e is the correction to an approximate solution 7. Pipeline parallelism can be employed by
staggering solutions to the PDE of interest (1) and multiple correction PDEs (2) (after initial
start-up costs).

Data parallelism is layered on top of the time (pipeline) parallelism through DD. As a
concrete example, discretize (1) and (2) using a first-order backwards Euler integrator. After
algebraic manipulations, one recovers a model boundary value problem from both (1) and (2),

l1—-alju=f(z), z€Q (3a)

Clu)=0, e (3b)
N

Decomposing the computational domain 2 into N non-overlapping domains, 2 = U ;, one
i=1

reformulates (3) into the coupled system of boundary value problems. Also known as a Schwarz-
type approach, the reformulated problem is to find (u;)1<;<n such that

(1—-al)u; = f(z), =€y (4a)
Clu;) =0, z€dNoN, (4b)
’]Ej(ui) = ’Tij(uj)y x € 08 N 8Qj, (4C)

where (7;;)1<i j<n are transmission conditions on the interfaces between the sub-domains. The
coupled system (5) is solved iteratively using a Jacobi algorithm,

(1- aﬁ)uf“ = f(z), € (5a)
C(ubty =0, =€anan, (5b)
T (uf ™) = T;(uf), 2 € 00, N0y, (5¢)



Since this formulation of a parallel space—time algorithm involves pipeline and data paral-

lelism, our implementation uses multiple modes of programming. OpenMP is used to handle
the pipeline (time) parallelism; MPI is used to handle the data (DD) parallelism. The hybrid
OpenMPI-MPI framework used to is discussed in [1, 4]. The C++ software was compiled and
bench-marked on a general purpose x86 cluster. Each node, consisting of dual-socket Intel
Sandy Bridge processors, are connected using FDR infiniband. The linear heat equation in 2D
with optimized transmission conditions was used as a test problem.

1.0
Figure 1: The linear heat equa-
08 - tion is solved in R2. The domain
is subdivided into a 10 x 10 grid
of non-overlapping subdomains. A
? 0.6 1 second order finite discretization is
2 used spatially, and an eighth-order
£ 04 RIDC method is used for the time
discretization. The number of con-
current threads that the RIDC in-
0.2 1 tegrator is allowed to use is varied.
This result shows that we can take a
0 X X X X ‘ spatially parallel code, and layer on
0 200 400 600 800 1000 time-parallelism with relatively high
efficiency.
cores
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Deferred correction from equispaced data based on efficient
high-order rational integration

Georges Klein* with Stefan Giittelf

In this talk, we present rational deferred correction (RDC) methods for the solution of initial value
problems. Inspired by spectral deferred correction (SDC) methods from [1] by Dutt, Greengard &
Rokhlin, we demonstrate that similar accuracy and stability can be achieved with equispaced points
instead of Gauss—Legendre points if one resorts to the linear barycentric rational interpolants [2] con-
structed by Floater and Hormann.

To be more specific, we are interested in solving initial-value problems for a function u : [0, T] — CV,

W(t) = ftut),  u(0)=ugeCN. (1)

Assume we have already computed a discrete low order approximation u =~ u, e.g., with a forward
or backward Euler scheme. In order to achieve higher precision, u is iteratively corrected as follows.
The problem (1) is reformulated as a Picard integral to avoid numerical differentiation,

u(t) = u) + [ f(ru(r)ar, )
or equivalently, with e = u — @ the approximation error,
u(t) + e(t) = u(0) + /0 f(ra(r) 4+ e(r)) dr. (3)
Using (2) to define the residual
() =)+ [ f(r(r) dr ), (@)
we immediately find from (3)
€(t)=7”(f)+/ f(ru(r) +e(r)) — f(r,u(r)) dr, (5)
0

which is a Picard-type formulation for the error e. Equation (5) can then be solved with the same
time-stepping method which was used to obtain the initial approximation u. With this estimation of
the error u is corrected via tnew = U+e€, so as to conclude one deferred correction sweep. The procedure
can be iterated until stagnation occurs, typically when the precision of the collocation solution of (1)
is reached.

Since the approximation w is available only as @; at discrete values of the time variable once (2)
is solved, for (4) to make sense, a continuous approximation must be constructed from the u;, e.g.,
via interpolation. The procedure proposed in [1] involves polynomial interpolants of degree n, where
n can be quite large to achieve sufficient accuracy. To prevent this polynomial interpolation from
being unstable, it was advocated in [1] to interpolate the integrand in (4) at Gauss-Legendre points

*Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, United Kingdom. Supported by the
Swiss National Science Foundation under Grant No. PBFRP2-142826
tSchool of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom



or Chebyshev points. Because such an interpolation process will achieve spectral accuracy in time, the
resulting method is called spectral deferred correction (SDC).

Recent investigations have revealed that linear rational interpolation [2] with equispaced points can
be stable and achieve high accuracy even with large numbers of points. We define rational deferred
correction (RDC) as the analogue of the above described SDC with linear rational interpolation and
equispaced points.

Before we present the RDC integrator in more detail and compare its performance with SDC, we
review the construction and properties of the linear rational interpolation scheme. Assume we are
given n + 1 points tg < t; < ... < t,, in a closed interval [a,b] and corresponding values of a function
fo, fi,---, fn- Each choice of the nonnegative parameter d < n defines a member of the family of
rational interpolants,

(=)'
(t—ti)--(t —tiya)’

SN ()pi(t)
S A

as a blend of polynomial interpolants of degree d. With equispaced points in particular and an adequate
choice of d, which we will explain, these interpolants are well-conditioned and lead to approximations
of order d + 1 of sufficiently smooth functions. Moreover the linearity in the data conveniently leads to
quadrature rules of order d+ 2, and makes them very appealing for the solution of initial value problems
as described above.

We review theoretical results, present numerical examples and compare some properties of RDC
with those of SDC. Our investigations are initial studies of integration methods based on linear rational
interpolation and can be extended in numerous ways.

rn(t) = ) Ai(t) =
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Conservations with parareal in time algorithm

In this presentation we shall cover the basics of the parareal
in time algorithm, we shall recall the theoretical reasons why
it works for dissipative problems. We shall present some
ingredients that needs to be added in order to tackle problems
for which conservation is important.



MINARET: Towards a time-dependent neutron transport parallel solver
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Abstract

The advances of computer power in the last decades have today resulted in an increased memory
storage per processor and also in a raising number of available processors to compute a given task.
From the numerical simulation point of view, this context has allowed the implementation of more
and more accurate — and therefore more computationally expensive and time-consuming — solvers
that can be run in a reasonable time if advantage is taken of launching concurrently several processors.
This speed-up in the computing time requires, however, the investigation of innovative acceleration
techniques such as domain decomposition methods.

In the field of nuclear core calculations and, more particularly, regarding the neutron transport
equation, this context has led to significant advances from the accuracy point of view: recent develop-
ments of time-dependent neutron transport codes such as DORT-TD [1] or TORT-TD |[2]| have indeed
overcome the traditional diffusion, improved quasi-static [3] or point kinetics traditional approxima-
tions.

However, although the problem of merging a neutron transport accurate solver with parallel compu-
tations has already been addressed before for the angular [4] and energy [5] variables in the stationnary
case, no study has been done so far in order to specifically speed-up time-dependent transport calcula-
tions and this work is a step in this direction. On this purpose, a multigroup 3D kinetic transport S,
code has been implemented (in a solver called MINARET [6]) and the parallelization of the angular
and time variables are currently being explored. In particular, the time variable is parallelized by a
domain decomposition technique: the parareal time algorithm (see [7], [8], [9]).

In this talk, after recalling the time-depend neutron transport equation, we will explain its dis-
cretization and implementation in MINARET. This will allow to illustrate the importance of the study
of speed-up methods for the solver in order to run calculations in a reasonable computing time. After
a brief review of the traditional sequential accelerations used in the field of neutron transport, our talk
will specifically focus on the analysis of acceleration techniques that involve the parallelization of the
variables of the equation. In particular, results concerning the parallelization of the angular and the
time variables in MINARET will be exposed.
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Space-Time Methods for Wave Equations

Discretizations and Convergence Analysis

Christian Wieners
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We discuss three full space-time discretizations for linear wave equations: an adaptive dis-
continuous Galerkin method in space and time (dG), a discontinuous Petrov-Galerkin method
(DPG), and a new hybrid variant (hDPG).

The general setting Let ) C R” be a bounded Lipschitz domain, and let V' C Ly(€2)” be a
Hilbert space with weighted inner product (v, w)y = (Mv, w)gq, where M € L, (Q)7*7 is

uniformly positive and symmetric. We study the evolution equation
Mop(t) + Au(t) = f telo,7], u(0) = ug, (1)

where A is a linear operator in V' with domain D(A) C V corresponding to a hyperbolic linear
system, i.e. (Av,v)oo = 0 for v € D(A). For simplicity, we consider only homogeneous
boundary conditions on 0€2 which are included in the domain of the operator.

For the existence and uniqueness of the solution we require that V' (A) C V is the clo-
sure of D(A) with respect to the topology in V/, that A is a closed operator in V' (A)
and that the operator M ' A generates a semigroup in V(A). This setting applies, e.g., to
acoustic waves with M(q,p) = (q,pp) and A(q,p) = (Vp,divq), to elastic waves with
M(o,v) = (C'o,pv) and A(o,v) = (—&(v),—dive), and to electro-magnetic waves
with M(H,E) = (uH,<cE), where the operator A(H,E) = (curl E, — curl H) is defined,
e.g., in D(A) = {(H,E) € H(curl, Q) x Hy(curl,Q): div(uH) = 0, div(cE) = 0} fora
perfect conducting boundary.

Let @ = Q x (0,7 be the space-time cylinder. We define H = Ly (0,7 V(A)) C Lo(Q), and
we consider the space-time operator L = M0t + A defined on U = D(L), where we assume

that U is closed with respect to the graph norm of L. Our analysis is based on the a-priori
bound
[ullz < 2T |[Lullx

which shows that solution of the equation Lu = f is unique. Note that L is skew-adjoint, i.e.,
(Lua V)Q = _(u7 LV)Q



For a given decomposition of the space-time cylinder Q = | J 7 into space-time cells 7 = K x [
we discuss three discretizations.

A discontinuous Galerkin method (dG) Let V;, C L,(Q)’ be a discontinuous space of
polynomials with variable degree, and let A, be the discontinuous Galerkin operator with full
upwind flux, see [1]. In every time slice 2 X (¢,,_1, t,,) we use the implicit mid-point rule; note
that this is unconditionally stable. This allows for an adaptive local refinement of the space-
time discretization and for a parallel multigrid preconditioner on the refinement hierarchy,
where the full problem on the coarsest level is solved with a parallel direct solver [2].

A discontinuous Petrov-Galerkin method (DPG) On every space-time cell 7, integration
by parts yields
(Lll, V)T = _(u7 LV)T + <’77-11, 7:V>7' )

where ~, is the trace operator of U|, to values on §7, and ~* is its adjoint. Let U/ =[[(Ul,)
be the global trace space. The DPG method computes an approximation (i) € U of the trace
and local discontinuous approximations u, € Ly(7)” such that

_(u'ry LVT)T + <ﬁ77 ’Y:V'r>'r = (fa VT)T

for all test functions v, in an optimal test space. In this setting, optimal space-time a priori
estimates exist [4], and the trace approximation is determined by a symmetric positive definite
Schur complement problem which can be preconditioned efficiently by multigrid methods [3].

A hybrid discontinuous Petrov-Galerkin method (hDPG) A hybrid variant of the DPG
method is formally obtained by choosing a nonconforming approximation of the trace space.
This makes the data structure and a parallel communication more flexible. Again this allows
for a symmetric positive definite Schur complement reduction.
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First step towards Parallel and Adaptive
Computation of Maxwell’s Equations

Stefan Findeisen
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Maxwell’s equations describe the behavior of an electromagnetic wave in three spacial dimensions over
a certain period [0,7]. The wave consists of two fields, the electric E and the magnetic H, respectively.
They can be computed by the linear first-order Maxwell system

pOH+VxE=0, e)E—-VxH=0, V-(uH)=0, V-(cE)=0 (1)

with permeability x4 and permittivity e. Each field consists of three components. Hence one has to com-
pute six components of the fields, which depend on space and time. For a given problem this can lead to
huge linear systems. This is why fast space—time codes are needed to solve the problem in a reasonable
computation time.

Together with an initial condition ug, (1) can be written as
Mopu(t) + Au(t) =0 for t € [0,T], u(0) = uyg,

on a bounded Lipschitz domain © C R3, where M, A, u are given by

ey 4= W o

Using a discontinous Galerkin discretization with upwind flux for the spacial discretization, we receive
the semi—discrete system of equation

Mhatuh(t) + Ahuh(t) =0forte [0, T] s uh(()) = uy,0,

where Mj, and Aj, are the corresponding mass and flux matrices, respectively. In order to avoid a CFL
(Courant—Friedrichs—Lewy) condition we use the implicit midpoint rule for time integration, which is of
order two. Hence we have to solve a linear system (M}, + gAh)v = b in every time step. However an
implicit method allows a larger step size 7 than an explicit scheme.

In the following we present an adaptive programming model which is able to solve the 2D reduction of
Maxwell’s equations, e.g., u = (Hy, Hy, E3) and H3 = E; = E; = 0 and Q C R2. The discretization of



our space—time domain Q := Q x [0,7] is done as follows. First 2 is decomposed into a finite number of
open elements (e.g. triangles) K C € such that Q = |J K. Analogously [0, 7] is decomposed into a finite

number of N open intervals I,, = (t,,tn+1) C [0,7] for n = 0,..., N — 1 such that [0,T] = Ug;ol L.
Now we are able to define space-time cells K; := K x I which consists of a spacial element K and a

time interval I. Hence @ can be decomposed into a finite number of open space—time elements K; C @
such that Q = |J K;. The data structure is organized as hash maps. That means that every space-time
cell and its components (such as faces, edges, vertices) is identified by its geometric midpoint and stored
in a hash map (where the midpoints are used as hash keys). By doing so, it is easy to distribute the
space—time cells among the different processes and solve the problem parallel.

So far, our code is p—adaptive and uses different time steps. That means that the order of a polynomial
on a space—time cell is adapted and the space—time cells can be refined in time. In a first step we compute
our solution uy, on a slice S, := Q X [t,,, t,4+1] C @ with fixed polynomial degree p = 0. Then we take the
flux over the cell faces as an indicator where the polynomial degree should be increased and cells should
be refined in time. To be more precise, the indicator ng, of a cell K is given by the sum of the face
indicators ny:

M=

fE€FK;

0} = hy | (F*(un) = Fun)) - nre, |17,

where F' and F™* are the flux and the numerical flux and hy, ny are the area and the outer normal vector
of the face f. The polynomial degree is increased, if the indicator of the cell fulfills the inequality
1-46
0 > (1—0) max

for a given parameter 0 (e.g. 6 = 0.9). After that we recompute the solution with the new distribution
of the polynomial degrees and time refined cells. Since our code provides polynomials up to order p = 4,
four p—adaptive refinements are possible. Although the computation of 7, is heuristic, it leads to good
results in a sense that high polynomial degrees are used in areas where a single wavefront is located. In
areas with absence of a wave, lowest polynomial degrees are used.

In the future the described programming model will be the basis for a space—time adaptive code to solve
Maxwell’s equation in three spacial dimensions. Thus our next steps will be h—adaptivity in space.
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An intermediate state method for the time-parallelized solving of
optimal control problems.

Time parallelization is an efficient way to accelerate the numerical
solving of optimality systems associated to control problems. In
this talk, we present a general approach to parallelize optimal
control solvers. This method is based on the introduction of
intermediate states and enables to decompose the original optimality
system into similar sub-systems. these ones can then be treated
independently using standard solvers. We present a recent improving
on the method that makes it fully efficient and discuss the role of
the solver used in parallel.



Multirate time integration of the Euler equations

Joerg Wensch (TU Dresden)

The simulation of atmospheric dynamics relies on the numerical solution of
the Euler equations. These equations exhibit phenomena on different temporal
scales. Sound waves propagate approximately ten times faster than the ad-
vective waves. An approach to overcome the CFL restriction caused by sound
waves are split-explicit methods. By multirate techniques the terms relevant for
sound waves are integrated by small time steps with a cheap time integration
procedure, whereas the slow processes are solved by an underlying Runge-Kutta
method using a larger macro step size. We construct such methods based on
TVD-RK schemes and discuss order and stability properties.
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Towards Scalable Parallel Long Time Integration of Chaotic Dynamical Systems

Simulations of chaotic dynamical systems, e.g., turbulent fluid flows, often
require hundreds of thousands of time steps in order to obtain converged
statistics. For applications that requires fast turnaround time, scalable
parallel time integration is needed to break the bottle neck of spatial-only
parallelization in current-generation simulations. This talk first summarizes
existing parallel time integration methods, and analyze the scalability problem
encountered in chaotic dynamical systems. We then outlines a new method that
can potentially achieve perfect scalability. This new method is based on a
least squares problem of the governing equation, instead of an initial value
problem. In contrast to many existing time decomposition methods, the number
of iterations required by our method is insensitive to the length of the time
integration, making our method scalable.



Temporal parallelization of advanced operation scenario simulations of

fusion plasma
D. Samaddar', T.A. Casper’, S.H. Kim*, L.A. Berry’, W R. Elwasif”,
D. Batchelor’, W.A. Houlberg’
1. Culham Science Centre, Abingdon, Oxon OX14 3DB, UK
2 ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance, France
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This work explores the application of the Parareal algorithm[1] to advanced operation
scenario codes in tokamak plasmas, using the CORSICA[2, 3] code as a test bed. CORSICA
is an advanced free-boundary equilibrium and transport simulation code used to study plasma
scenarios in burning plasma experiments and is of particular importance for making
predictions for the ITER experiment under construction.

The “Parareal Framework™ developed at the Oak Ridge National Laboratory as part of the
SWIM IPS project[4] has been used for implementing the algorithm. This framework allows
efficient use of processors using the “moving window scheme”[5] along with multiple levels
of concurrency.

In the past the Parareal algorithm has been successfully applied to multiple problems
including fully developed plasma turbulence simulations which are high dimensionally
chaotic initial value problems[6]. However, temporal parallelization of CORSICA introduces
new challenges compared to previous applications.

Since the Parareal algorithm involves a predictor-corrector technique, applying the algorithm
in this case requires a new approach to the coarse solver necessary for the algorithm. The
integration of the Parareal algorithm into the parallelization of CORSICA also allows
multiple levels of concurrency. With temporal parallelization being the highest level of
parallelization in this case, different levels of simplification are possible when selecting the
coarse solver. For example, the source terms and transport properties may not be updated in
the coarse solution.

Successfully implementing the Parareal algorithm to codes like CORSICA generates the
possibility of time efficient simulations of ITER-like plasmas.
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Numerical Analysis Group

The Numerical Analysis group is led by Professor Nick
Higham, FRS, Professor David Silvester and Professor
Francoise Tisseur and comprises eight permanent members
of staff, plus research associates and research fellows.

Professor Jack Dongarra holds a part-time position jointly
with the School of Computer Science. The group carries out

research in various areas of numerical analysis and provides

Professor James H. Wilkinson

teaching and supervision at the undergraduate (in all four
years) and postgraduate (M.Sc. and Ph.D.) levels. It forms
part of the Applied Mathematics Unit.

In 2012 the group was strengthened by the appointment of three new Lecturers: Simon Cotter,
Stefan Guettel and Martin Lotz.

Activities of the group include organizing international conferences and a Numerical Analysis
and Scientific Computing seminar series; writing textbooks and research monographs;
membership of editorial boards of international journals and book series; and contributing
software to the NAG and LAPACK libraries and MATLAB. The group has a large grant portfolio
supported by bodies such as EPSRC, The European Research Council, The Royal Society,
The British Council, and in the USA (though Dongarra) the NSF and DOE. Large grants
include an EPSRC Leadership Fellowship (Tisseur) and an ERC Advanced grant (Higham). In
addition, Higham and Silvester lead the EPSRC Network on Numerical Algorithms and High
Performance Computing (2011-2014).

The strength of numerical analysis in Manchester is indicated by the fact that no less than
three of our researchers, Dongarra, Hammarling and Higham, have been elected SIAM
Fellows and designated Highly Cited Researchers at ISIHighlyCited.com. Members of the
group also feature strongly on the list of Manchester mathematicians on Google Scholar
Citations.

Numerical analysis has a long history going back at least to Newton and Gauss, whose names
adorn some of today's most-used numerical methods. The UK has a strong tradition of
research excellence in the subject, as exemplified by James H. Wilkinson (1919-1986), FRS,
who was at the forefront of developments in numerical linear algebra from the days of the first
digital computers. In Manchester, numerical analysis has long been an area of strength, and
M.Sc. programmes in numerical analysis have run continuously since 1959. See the short
historical essay Numerical Analysis at the Victoria University of Manchester, 1957-1979, by
Joan Walsh.
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Workshop dinner

For participants registered on the workshop dinner: it will take place on Tues-
day evening in the Japanese restaurant SAMSI on 36-38 Whitworth Street. See
below for walkable route from the Alan Turing Building (A) to SAMSI (B).
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