
First step towards Parallel and Adaptive

Computation of Maxwell’s Equations

Stefan Findeisen

Karlsruhe Institut of Technolgy

Departement of Mathematics

Kaiserstr. 12, 76128 Karlsruhe, Germany

stefan.findeisen@kit.edu

Maxwell’s equations describe the behavior of an electromagnetic wave in three spacial dimensions over

a certain period [0, T ]. The wave consists of two fields, the electric E and the magnetic H, respectively.

They can be computed by the linear first–order Maxwell system

µ∂tH +∇×E = 0, ε∂tE−∇×H = 0, ∇·(µH) = 0, ∇·(εE) = 0 (1)

with permeability µ and permittivity ε. Each field consists of three components. Hence one has to com-

pute six components of the fields, which depend on space and time. For a given problem this can lead to

huge linear systems. This is why fast space–time codes are needed to solve the problem in a reasonable

computation time.

Together with an initial condition u0, (1) can be written as

M∂tu(t) +Au(t) = 0 for t ∈ [0, T ] , u(0) = u0,

on a bounded Lipschitz domain Ω ⊂ R3, where M , A, u are given by

M :=

[
µ 0

0 ε

]
, A :=

[
0 ∇×
−∇× 0

]
, u :=

[
H

E

]
.

Using a discontinous Galerkin discretization with upwind flux for the spacial discretization, we receive

the semi–discrete system of equation

Mh∂tuh(t) +Ahuh(t) = 0 for t ∈ [0, T ] , uh(0) = uh,0,

where Mh and Ah are the corresponding mass and flux matrices, respectively. In order to avoid a CFL

(Courant–Friedrichs–Lewy) condition we use the implicit midpoint rule for time integration, which is of

order two. Hence we have to solve a linear system (Mh + τ
2Ah)v = b in every time step. However an

implicit method allows a larger step size τ than an explicit scheme.

In the following we present an adaptive programming model which is able to solve the 2D reduction of

Maxwell’s equations, e.g., u = (H1,H2,E3) and H3 ≡ E1 ≡ E2 ≡ 0 and Ω ⊂ R2. The discretization of



our space–time domain Q := Ω× [0, T ] is done as follows. First Ω is decomposed into a finite number of

open elements (e.g. triangles) K ⊂ Ω such that Ω̄ =
⋃
K̄. Analogously [0, T ] is decomposed into a finite

number of N open intervals In = (tn, tn+1) ⊂ [0, T ] for n = 0, . . . , N − 1 such that [0, T ] =
⋃N−1
n=0 Īn.

Now we are able to define space–time cells KI := K × I which consists of a spacial element K and a

time interval I. Hence Q can be decomposed into a finite number of open space–time elements KI ⊂ Q

such that Q̄ =
⋃
K̄I . The data structure is organized as hash maps. That means that every space–time

cell and its components (such as faces, edges, vertices) is identified by its geometric midpoint and stored

in a hash map (where the midpoints are used as hash keys). By doing so, it is easy to distribute the

space–time cells among the different processes and solve the problem parallel.

So far, our code is p–adaptive and uses different time steps. That means that the order of a polynomial

on a space–time cell is adapted and the space–time cells can be refined in time. In a first step we compute

our solution uh on a slice Sn := Ω× [tn, tn+1] ⊂ Q with fixed polynomial degree p = 0. Then we take the

flux over the cell faces as an indicator where the polynomial degree should be increased and cells should

be refined in time. To be more precise, the indicator nKI
of a cell KI is given by the sum of the face

indicators ηf :

η2KI
:=

∑
f∈FKI

η2f ,

η2f := hf ‖(F∗(uh)− F(uh)) · nKI
‖2L2

,

where F and F ∗ are the flux and the numerical flux and hf , nf are the area and the outer normal vector

of the face f . The polynomial degree is increased, if the indicator of the cell fulfills the inequality

ηKI
> (1− θ) max

KI∈Sn

ηKI

for a given parameter θ (e.g. θ = 0.9). After that we recompute the solution with the new distribution

of the polynomial degrees and time refined cells. Since our code provides polynomials up to order p = 4,

four p–adaptive refinements are possible. Although the computation of ηKI
is heuristic, it leads to good

results in a sense that high polynomial degrees are used in areas where a single wavefront is located. In

areas with absence of a wave, lowest polynomial degrees are used.

In the future the described programming model will be the basis for a space–time adaptive code to solve

Maxwell’s equation in three spacial dimensions. Thus our next steps will be h–adaptivity in space.


