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Abstract

The accurate and reliable numerical approximation of

the hyperbolic wave equation is of fundamental impor-

tance to the simulation of acoustic, electromagnetic and

elastic wave propagation phenomena. Here, we present

families of variational space–time discretisation meth-

ods of higher order for the acoustic wave equation

as a protoype model for the three-dimensional elas-

tic wave equation. In temporal domain we present two

families of continuous and discontinuous discretisation

schemes. For the spatial discretisation a symmetric in-

terior penalty discontinuous Galerkin method is used.

From these classes of uniform Galerkin discretisations

in space and time an approach of fourth-order accuracy

is analysed carefully. The efficient solution of the re-

sulting block-matrix system and inherently parallel nu-

merical simulation through domain decomposition is

adressed. The performance properties of the schemes

are illustrated by sophisticated and challenging numer-

ical experiments with complex wave propagation phe-

nomena in heterogeneous media.

1 Motivation

Our interest in developing numerical approximation

schemes of higher order accuracy for the wave equation

comes from mechanical engineering. Multiple layer

fibre reinforced composites have become one of the

most promising materials to build light-weight struc-

tures for several fields of application, for instance in

aerospace and automotive fields. These composites are

able to combine high strength and rigidity of the re-

inforced fiber with excellent properties of synthetic

resins in best possible way. Nondestructive material in-

spection by piezoelectric induced ultrasonic waves is

a relatively new and challenging technique to monitor

the healthiness of such components. Several material

damages (delamination of layers, matrix cracks, fibre

breaks) may occur and have to be detected by some

autonomous structural health monitoring system. For

the design of structural health monitoring systems it

is strictly necessary to understand phenomenologically

and quantitatively wave propagation in layered fibre re-

inforced composites and the influence of the geometri-

cal and mechanical properties of the system structure.

Numerical simulation is a promising way to achieve

this goal; cf. [2] and Fig. 1. Therefore, the ability to

solve numerically the wave equation in three space di-

mensions is particularly important from the point of

view of physical realism. However, this is still a chal-

lenging task and an active area of research.

Figure 1: Ultrasonic waves in carbon fibre composite.

2 Introduction to variational space–time methods

In the field of numerical wave propagation the spatial

discretisation by some discontinuous Galerkin finite el-

ement method (DGM) has attracted the interest of re-

searchers; cf., e.g. [4]. Advantages of the FEM are the

flexibility with which it can accommodate discontinu-

ities in the model, material parameters and boundary

conditions and the ability to approximate the wavefield

with high degree polynomials. The spatial DGM has

the further advantage that it can accomodate disconti-

nuities also in the wavefield, it can be energy conser-

vative, and it is suitable for inherently parallel simula-

tions. The mass matrix of the spatial DGM is block-

diagonal, where each block size coincides with the de-

grees of freedom of the associated element, such that

its inverse is available at very low computational cost.

Recently, variational space–time discretisation schemes

were proposed and studied for the parabolic heat equa-

tion and for systems of ordinary differential equations

[3]. In this contribution we will focus on the pre-

sentation of continuous and discontinuous variational

temporal discretisation schemes from the variational



space–time approach for the hyperbolic wave equa-

tion. For the spatial discretisation a symmetric interior

penalty discontinuous Galerkin method is used; cf. [4].

From these families of uniform variational discretisa-

tions a scheme of fourth order accuracy with respect to

the temporal and spatial variables is studied carefully.

It will be shown that the block-diagonal structure of the

spatial mass matrix, resulting from the discontinuous

Galerkin approach, can be used to decouple efficiently

the arising temporal block linear system. The perfor-

mance properties and computational cost of the numer-

ical scheme are illustrated by some numerical conver-

gence studies. Moreover, the schemes are applied to

wave propagation phenomena in heterogeneous media

admitting mutiple sharp wave fronts; cf. [1] and Fig. 2.
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Figure 2: Inherently parallel acoustic wave simulation.

3 Temporal discretisation schemes

Exemplarily, our family of continuous-in-time varia-

tional discretisation schemes for the wave equation

ρpxq Bt vpx, tq ` apupx, tqq “ fpx, tq ,

Bt upx, tq ´ vpx, tq “ 0 ,
(1)

written as velocity-displacement formulation and

equipped with initial conditions up0q “ u0, vp0q “
v0 and homogeneous Dirichlet boundary conditions, is

presented here. For the discontinuous-in-time counter-

part of this approach we refer to [1].

We decompose I “ p0, T s into N subintervals In “
ptn´1, tns. For some Hilbert space H, let

X r
C

pHq “ tu P CpI, Hq : u|In P PrpIn, Hqu ,

YrpHq “
 
w P L2pI, Hq : w|In P Pr´1pIn, Hq

(
,

PrpIn,Hq “
!
u : In Ñ H : u“

řr

j“0
ξjn t

j , ξjn P H
)
.

Our continuous-in-time variational approximation of

(1) then reads as: Find uτ P X r
C

pI,H1
0 pΩqq, vτ P

X r
C

pI, L2pΩqq, such that uτ p0q“u0, vτ p0q“v0 and
ż T

0

!`
Btvτ , pwτ

˘
Ω

` a
`
uτ , pwτ

˘)
dt “

ż T

0

`
f, pwτ

˘
Ω
dt

ż T

0

!`
Btuτ , rwτ

˘
Ω

´
`
vτ , rwτ

˘
Ω

)
dt “ 0

for all pwτ P YrpH1
0 pΩqq and rwτ P YrpL2pΩqq. Here,

p¨, ¨qΩ denotes the L2pΩq inner product. Precisely, we

have a temporal Galerkin-Petrov method, since the

trial and test spaces do not coincide. Since the test

space imposes no continuity constraints between ele-

ments, we can rewrite the problem as time marching

scheme. Finally, we apply an interior penalty discon-

tinuous Galerkin method in spatial domain and call this

approach a cGP(r)-dG(p) method. We obtain the Crank-

Nicolson scheme for r “ 1 and for r ě 2 we observe

superconvergence in the integration points, cf. [1, 3].

4 Future Prospects

By using variational space–time methods for the dis-

cretisation of the wave equation we have a uniform

variational approach in space and time which may be

advantageous for the future analysis of the fully dis-

crete problem and the construction of simultaneous

space–time adaptive methods. Further, it is very natural

to construct temporal methods of even higher order then

presented here. The well-known finite element stability

concepts of the temporal Galerkin-Petrov or discontin-

uous Galerkin methods can be used to obtain at least

A-stable methods. For future developments, the well-

known adaptive finite element techniques can be ap-

plied for changing the polynomial degree and the length

of the time steps, cf. [3, 6, 5].
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