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We present recent efforts to develop fully parallel space—time algorithms, which will improve
the fidelity and scalability of numerical simulations across many areas in computational science.
Our approach combines Revisionist Integral Defect Correction (RIDC) methods [2, 3], a family of
time-parallel integrators, with Domain Decomposition (DD) methods [6, 5], an approach to split
boundary value problems into smaller boundary value problems on sub-domains and iterating
to coordinate the solution between adjacent sub-domains. The basic idea is as follows: while a
set of N processing cores are computing a low-order approximation to the domain-decomposed
solution at time t", additional sets of N cores are simultaneously computing corrections to the
low(er)-order approximations at time ¢™, where m < n.

Consider the general problem of interest:

up = L(t,u), =€ x][0,T] (1a)
B(t,u) =0, z¢€0dQx]0,T] (1b)
u(0,z) = g(z), =z €. (1c)

Denote an approximate solution to (1) as n(¢,x), and the residual as €(t, z) = n, — L(t,n). Then,
the following correction PDE can be derived,

[e +/0 e(,x) dr]t =L(t,n+e)—L(t,n), xeQx][0,T] (2a)
e(t,z) =0, x€0Qx][0,T] (2b)
e(0,z) =0, z€, (2¢)

where e is the correction to an approximate solution 1. Pipeline parallelism can be employed by
staggering solutions to the PDE of interest (1) and multiple correction PDEs (2) (after initial
start-up costs).

Data parallelism is layered on top of the time (pipeline) parallelism through DD. As a
concrete example, discretize (1) and (2) using a first-order backwards Euler integrator. After
algebraic manipulations, one recovers a model boundary value problem from both (1) and (2),

(1-al)u= f(x), z€f (3a)

Clu)=0, ze€ . (3b)
N

Decomposing the computational domain €2 into N non-overlapping domains, €2 = U );, one
i=1

reformulates (3) into the coupled system of boundary value problems. Also known as a Schwarz-
type approach, the reformulated problem is to find (u;)1<i<ny such that

(1—-al)u; = f(x), z€l (4a)
C(ul) =0, x€0Q; NN, (4b)
Tij(wi) = Tij(uy), =« € 0 N OQ, (4c)

where (7{-)19-’]3 N are transmission conditions on the interfaces between the sub-domains. The
coupled system (5) is solved iteratively using a Jacobi algorithm,

(1—al)uf™ = f(z), ze€ (5a)
Cubty =0, z € a9 nan, (5b)
T (uit) = T (ub), 2 € 00 noQy. (5¢)



Since this formulation of a parallel space-time algorithm involves pipeline and data paral-

lelism, our implementation uses multiple modes of programming. OpenMP is used to handle
the pipeline (time) parallelism; MPT is used to handle the data (DD) parallelism. The hybrid
OpenMPI-MPI framework used to is discussed in [1, 4]. The C++ software was compiled and
bench-marked on a general purpose x86 cluster. Each node, consisting of dual-socket Intel
Sandy Bridge processors, are connected using FDR infiniband. The linear heat equation in 2D
with optimized transmission conditions was used as a test problem.
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Figure 1: The linear heat equa-
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