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I. INTRODUCTION

A recently developed time-parallel method is the “parallel full ap-
proximation scheme in space and time” (PFASST) introduced in [1],
[2]. It is based on spectral deferred correction methods (SDC) [3], a
class of methods that iteratively uses low order methods to obtain an
overall method of high order of accuracy. By intertwining the SDC
iterations with a Parareal-like iteration (see [4] for Parareal), PFASST
features an improved bound on parallel efficiency. The efficacy of
PFASST in extreme-scale parallel simulations on a BlueGene/P has
been demonstrated in [5].

II. SDC, MULTI-LEVEL SDC AND PFASST

Below, first the time-serial single level spectral deferred corrections
method is described briefly. Then, the time-serial, multi-level SDC
(MLSDC) approach is discussed. Finally, the time-parallel, multi-
level PFASST algorithm is sketched.

A. Spectral deferred corrections (SDC)

The SDC method introduced in [3] is an iterative approach to
compute a solution of a collocation formula. Given a time-step
[T, Th+1], denote by T, < to < ... < tm < Tni1 a set of
intermediate Gauf} collocation points. Typically, GauB3-Lobatto nodes
are used, so that T, = tp and Tv4+1 = tu. Integrating an initial
value problem from 7}, to 75,41 is then equivalent to solving the
Picard formulation
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Approximating (1) with a quadrature rule with nodes ¢,, results in a
linear or nonlinear system of equations (depending on the problem)
to be solved for the coefficients of the collocation polynomial. Instead
of solving the full system directly, SDC proceeds iteratively using so-
called ”sweeps” of a low order integration method, typically forward
or backward Euler. For a backward Euler, the sweeps are of the form
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Here, the operator S¥, approximates the Picard integral from t,, to
tm-+1, that is
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If the iteration converges, the term f (Ufzﬁ_ll) — f(UE,1) vanishes
and (2) for m =0,..., M — 1 can be combined into
M-1
Ui =T+ > Sm “
m=0

which is precisely the collocation approximation of (1).
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B. Multi-level spectral deferred corrections

In [6], a multi-level SDC method (MLSDC) is presented, that
in a certain sense provides the “missing link” between single-level,
time-serial SDC and multi-level, time-parallel PFASST. In contrast
to SDC, MLSDC performs sweeps not on a single level but on
a hierarchy of levels, where higher levels use fewer collocations
nodes and therefore a coarsened temporal discretization. A FAS
correction is employed in order to ensure information is properly
transferred between levels. It is shown in [6] that MLSDC provides
the same accuracy as SDC, minimally improved stability and that it
can reduce the number of iterations required for convergence. Also,
the incorporation of weighting matrices required e.g. for the use of
compact finite difference stencils is explained. Here, the SDC sweep
equation as well as the FAS correction need to be modified to achieve
higher-order discretizations in space.

In order to reduce the computational cost of MLSDC at coarser
levels, multiple strategies are presented to also coarsen the spatial
discretization on the higher levels of the hierarchy:

« Reduced spatial resolution

« Reduced order discretization
« Reduced implicit solve

o Reduced physics

The first two strategies are subsequently investigated in detail for
a linear advection-diffusion problem, nonlinear viscous Burgers’
equation and a shear layer instability described by the Navier-Stokes
equations in vorticity-velocity formulation, see Section III for a
tentative summary of the last problem.

One key advantage of MLSDC is that it can be parallelized in time,
leading to the “parallel full approximation scheme in space and time”
(PFASST) described below in Subsection II-C. Besides providing the
possibility to parallelize in time, however, MLSDC is also of interest
in its own right: It provides a starting point to extend it to a full space-
time multi-grid method and thus enables a completely new approach
to the field of space-time parallel multi-grid methods as studied e.g.
in [7], [8].

C. PFASST

The PFASST method is pioneered in [1]. In [2], it is introduced in
its ultimate form and its performance is studied for viscous Burgers’
equation and the Kuramoto-Silvashinsky equation. PFASST basically
corresponds to a number of concurrent MLSDC iterations running
for multiple time intervals assigned to different processors plus a
frequent exchange of updated values. PFASST employs SDC sweeps
on multiple levels and uses a FAS correction as well to efficiently
transfer information between levels. In particular, the FAS correction
also allows for efficient use of different spatial coarsening strategies
very similar to the MLSDC approach. Furthermore, to optimize
efficiency and reduce overhead from the coarse level sweeps, PFASST
features a pipelining strategy, see [1].
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(c) Coarse level: 32 x 32 grid points, M = 3
collocation points and second order spatial
discretization.

Fig. 1: Vorticity w at ¢ = 1.0 in the shear layer instability example on three levels of a MLSDC hierarchy. The coarse level shows clear
signs of underresolution like oscillations in the trailing tails of the vortical structures. MLSDC performs 256 time-steps in this example and
requires on average 6.9 iterations on each time-step to converge to a tolerance of 10~ 2.

By intertwining the SDC sweeps on the different levels with the
outer iteration, PFASST manages to achieve an improved bound on
parallel efficiency compared to plain Parareal. Denote by Pr the
number of processors, by K the number of sweeps of the underlying
SDC scheme, by « the ratio of the execution time of one coarse to
one fine sweep and by K, the number of PFASST iterations. The
speedup provided by PFASST then reads

B PrK, K
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Note how strategies to reduce the overhead of coarse level evaluations
in MLSDC directly translate into strategies to reduce « and thus
improve the speedup provided by PFASST. The potential of PFASST
to extend the strong scaling limit of the N-body tree-code PEPC [9]
in extreme-scale parallel simulations has been demonstrated in [5],
where timing result from runs on up to 262,144 processors on a
BlueGene/P system are presented. There, in order to optimize «, a
tree-code specific coarsening criterion was developed that roughly
corresponds to “reduced order in space”. An accuracy study accom-
panying the performance study and discussing the accuracy of SDC
and PFASST in combination with an N-body solver can be found
in [10].
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III. EXAMPLE

One example studied in [6] is the performance of MLSDC for a
2D shear layer instability. A tentative summary is given here. The
problem is described by the Navier-Stokes equations in vorticity-
velocity formulation

wt +u-Vw =rvAw 6)

with velocity u and vorticity w = V X u. The computational domain
[0,1])? is assumed to be periodic in both directions and the initial
velocity field is given by

uf(z,y) = —1.0 + tanh(p(0.75 — 3)) + tanh(p(y — 0.25)) (7)
uy(z,y) = —dsin(2r(z + 0.25)), (8)

corresponding to two shear layers at y = 0.25 and y = 0.75 with a
thickness parameter p = 50 and an initial disturbance in velocity of
amplitude § = 0.05. MLSDC uses an IMEX-type sweep, where the
advection of vorticity is treated explicitly while the diffusive term is
treated implicitly. Three levels are used and both the medium and the
coarse level feature a reduced resolution in space and reduced order
of the spatial discretization in addition to the reduced number of
collocation points, see Figure 1 for the exact values. Despite the fact
that clear signs of under-resolution are present on the coarse level, the
MLSDC iteration converges quickly and robustly and also conserves

total vorticity. The Poisson problems arising from the implicit part
of the IMEX scheme and during the recovery of the vorticity field
from a solenoidal stream function are solved using a the multi-grid
method PMG [11]. In the current version, the linear problems are
always solved to full accuracy and the strategy of using a “reduced
implicit solve” to coarsen in space has not yet been investigated.

IV. OuTLOOK

In the talk, we will provide an overview of the results on MLSDC
in [6]. We will also present first results of incorporating the third
coarsening strategy, using a “reduced implicit solve” for the implicit
part on coarser levels. Further, the connection of MLSDC and
PFASST will be illustrated. Studies comparable to the ones conducted
for MLSDC will be conducted with PFASST, in order to provide a
detailed assessment of the differences between time-serial MLSDC
and time-parallel PFASST.
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