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We discuss three full space-time discretizations for linear wave equations: an adaptive dis-
continuous Galerkin method in space and time (dG), a discontinuous Petrov-Galerkin method
(DPG), and a new hybrid variant (hDPG).

The general setting Let Ω ⊂ RD be a bounded Lipschitz domain, and let V ⊂ L2(Ω)J be a
Hilbert space with weighted inner product (v,w)V = (Mv,w)0,Ω, where M ∈ L∞(Ω)J×J is
uniformly positive and symmetric. We study the evolution equation

M∂tu(t) + Au(t) = f t ∈ [0, T ] , u(0) = u0 , (1)

where A is a linear operator in V with domainD(A) ⊂ V corresponding to a hyperbolic linear
system, i.e. (Av,v)0,Ω = 0 for v ∈ D(A). For simplicity, we consider only homogeneous
boundary conditions on ∂Ω which are included in the domain of the operator.

For the existence and uniqueness of the solution we require that V (A) ⊂ V is the clo-
sure of D(A) with respect to the topology in V , that A is a closed operator in V (A)
and that the operator M−1A generates a semigroup in V (A). This setting applies, e.g., to
acoustic waves with M(q, p) = (q, ρp) and A(q, p) = (∇p, div q), to elastic waves with
M(σ,v) = (C−1σ, ρv) and A(σ,v) = (−ε(v),− divσ), and to electro-magnetic waves
with M(H,E) = (µH, εE), where the operator A(H,E) = (curlE,− curlH) is defined,
e.g., in D(A) =

{
(H,E) ∈ H(curl,Ω) × H0(curl,Ω): div(µH) = 0, div(εE) = 0

}
for a

perfect conducting boundary.

Let Q = Ω× (0, T ) be the space-time cylinder. We define H = L2(0, T ;V (A)) ⊂ L2(Q), and
we consider the space-time operator L = M∂t + A defined on U = D(L), where we assume
that U is closed with respect to the graph norm of L. Our analysis is based on the a-priori
bound

‖u‖H ≤ 2T ‖Lu‖H ,

which shows that solution of the equation Lu = f is unique. Note that L is skew-adjoint, i.e.,
(Lu,v)Q = −(u, Lv)Q.



For a given decomposition of the space-time cylinder Q̄ =
⋃
τ̄ into space-time cells τ = K×I

we discuss three discretizations.

A discontinuous Galerkin method (dG) Let Vh ⊂ L2(Ω)J be a discontinuous space of
polynomials with variable degree, and let Ah be the discontinuous Galerkin operator with full
upwind flux, see [1]. In every time slice Ω× (tn−1, tn) we use the implicit mid-point rule; note
that this is unconditionally stable. This allows for an adaptive local refinement of the space-
time discretization and for a parallel multigrid preconditioner on the refinement hierarchy,
where the full problem on the coarsest level is solved with a parallel direct solver [2].

A discontinuous Petrov-Galerkin method (DPG) On every space-time cell τ , integration
by parts yields

(Lu,v)τ = −(u, Lv)τ + 〈γτu, γ∗τv〉τ ,
where γτ is the trace operator of U |τ to values on ∂τ , and γ∗τ is its adjoint. Let Û =

∏
γτ (U |τ )

be the global trace space. The DPG method computes an approximation (ûτ ) ∈ Û of the trace
and local discontinuous approximations uτ ∈ L2(τ)J such that

−(uτ , Lvτ )τ + 〈ûτ , γ∗τvτ 〉τ = (f ,vτ )τ

for all test functions vτ in an optimal test space. In this setting, optimal space-time a priori
estimates exist [4], and the trace approximation is determined by a symmetric positive definite
Schur complement problem which can be preconditioned efficiently by multigrid methods [3].

A hybrid discontinuous Petrov-Galerkin method (hDPG) A hybrid variant of the DPG
method is formally obtained by choosing a nonconforming approximation of the trace space.
This makes the data structure and a parallel communication more flexible. Again this allows
for a symmetric positive definite Schur complement reduction.
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