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We discuss three full space-time discretizations for linear wave equations: an adaptive dis-
continuous Galerkin method in space and time (dG), a discontinuous Petrov-Galerkin method
(DPG), and a new hybrid variant (hDPG).

The general setting Let ) C R” be a bounded Lipschitz domain, and let V' C Ly(£2)” be a
Hilbert space with weighted inner product (v, w)y = (Mv, w)g o, where M € Lo, (2)7*/ is
uniformly positive and symmetric. We study the evolution equation

Mow(t) + Au(t) = f tel0,7], u(0) = uy, (1)

where A is a linear operator in V' with domain D(A) C V corresponding to a hyperbolic linear
system, i.e. (Av,v)oq = 0 for v € D(A). For simplicity, we consider only homogeneous
boundary conditions on 02 which are included in the domain of the operator.

For the existence and uniqueness of the solution we require that V(A) C V is the clo-
sure of D(A) with respect to the topology in V, that A is a closed operator in V(A)
and that the operator M ' A generates a semigroup in V(A). This setting applies, e.g., to
acoustic waves with M(q,p) = (q,pp) and A(q,p) = (Vp,divq), to elastic waves with
M(o,v) = (Cto,pv) and A(o,v) = (—&(v),—dive), and to electro-magnetic waves
with M (H,E) = (uH,<E), where the operator A(H,E) = (curl E, — curl H) is defined,
e.g.,in D(A) = {(H,E) € H(curl, Q) x Hy(curl,Q): div(uH) = 0, div(¢E) = 0} fora
perfect conducting boundary.

Let Q = Q x (0,T") be the space-time cylinder. We define H = L,(0,7;V(A)) C Ly(Q), and
we consider the space-time operator L = M0t + A defined on U = D(L), where we assume
that U is closed with respect to the graph norm of L. Our analysis is based on the a-priori
bound

[ulla < 27" [| Lul[a

which shows that solution of the equation Lu = f is unique. Note that L is skew-adjoint, i.e.,
(Lu7 V)Q = _(u7 LV)Q‘



For a given decomposition of the space-time cylinder Q = | J 7 into space-time cells 7 = K x [
we discuss three discretizations.

A discontinuous Galerkin method (dG) Let V) C LQ(Q)J be a discontinuous space of
polynomials with variable degree, and let Aj, be the discontinuous Galerkin operator with full
upwind flux, see [1]. In every time slice €2 x (¢,,_1, t,,) we use the implicit mid-point rule; note
that this is unconditionally stable. This allows for an adaptive local refinement of the space-
time discretization and for a parallel multigrid preconditioner on the refinement hierarchy,
where the full problem on the coarsest level is solved with a parallel direct solver [2].

A discontinuous Petrov-Galerkin method (DPG) On every space-time cell 7, integration
by parts yields
(Luu v)T = _(u7 LV)T + <77'u7 7:V>T )

where 7, is the trace operator of U|, to values on 7, and 4* is its adjoint. Let U = [[(U]-)
be the global trace space. The DPG method computes an approximation (11,) € U of the trace
and local discontinuous approximations u, € Lo(7)” such that

_(u‘r’ LVT)T + <ﬁ7'7 7:V7'>‘r = (f, VT)T

for all test functions v, in an optimal test space. In this setting, optimal space-time a priori
estimates exist [4], and the trace approximation is determined by a symmetric positive definite
Schur complement problem which can be preconditioned efficiently by multigrid methods [3].

A hybrid discontinuous Petrov-Galerkin method (hDPG) A hybrid variant of the DPG
method is formally obtained by choosing a nonconforming approximation of the trace space.
This makes the data structure and a parallel communication more flexible. Again this allows
for a symmetric positive definite Schur complement reduction.
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