Space-Time Methods for Wave Equations

Discretizations and Convergence Analysis

Christian Wieners

Karlsruhe Institute of Technology
Department of Mathematics
Kaiserstr. 89-93, 76128 Karlsruhe, Germany
christian.wieners@kit.edu

We discuss three full space-time discretizations for linear wave equations: an adaptive discontinuous Galerkin method in space and time (dG), a discontinuous Petrov-Galerkin method (DPG), and a new hybrid variant (hDPG).

The general setting Let $\Omega \subset \mathbb{R}^D$ be a bounded Lipschitz domain, and let $V \subset L_2(\Omega)^J$ be a Hilbert space with weighted inner product $(\mathbf{v}, \mathbf{w})_V = (M\mathbf{v}, \mathbf{w})_{0,\Omega}$, where $M \in L_\infty(\Omega)^{J \times J}$ is uniformly positive and symmetric. We study the evolution equation

$$M\partial_t \mathbf{u}(t) + A\mathbf{u}(t) = \mathbf{f} \qquad t \in [0, T], \qquad \mathbf{u}(0) = \mathbf{u}_0,$$
 (1)

where A is a linear operator in V with domain $\mathcal{D}(A) \subset V$ corresponding to a hyperbolic linear system, i.e. $(A\mathbf{v}, \mathbf{v})_{0,\Omega} = 0$ for $\mathbf{v} \in \mathcal{D}(A)$. For simplicity, we consider only homogeneous boundary conditions on $\partial\Omega$ which are included in the domain of the operator.

For the existence and uniqueness of the solution we require that $V(A) \subset V$ is the closure of $\mathcal{D}(A)$ with respect to the topology in V, that A is a closed operator in V(A) and that the operator $M^{-1}A$ generates a semigroup in V(A). This setting applies, e.g., to acoustic waves with $M(\mathbf{q},p)=(\mathbf{q},\rho p)$ and $A(\mathbf{q},p)=(\nabla p,\operatorname{div}\mathbf{q})$, to elastic waves with $M(\boldsymbol{\sigma},\mathbf{v})=(\mathbf{C}^{-1}\boldsymbol{\sigma},\rho\mathbf{v})$ and $A(\boldsymbol{\sigma},\mathbf{v})=(-\boldsymbol{\varepsilon}(\mathbf{v}),-\operatorname{div}\boldsymbol{\sigma})$, and to electro-magnetic waves with $M(\mathbf{H},\mathbf{E})=(\mu\mathbf{H},\boldsymbol{\varepsilon}\mathbf{E})$, where the operator $A(\mathbf{H},\mathbf{E})=(\operatorname{curl}\mathbf{E},-\operatorname{curl}\mathbf{H})$ is defined, e.g., in $\mathcal{D}(A)=\left\{(\mathbf{H},\mathbf{E})\in \mathrm{H}(\operatorname{curl},\Omega)\times \mathrm{H}_0(\operatorname{curl},\Omega)\colon \operatorname{div}(\mu\mathbf{H})=0,\ \operatorname{div}(\boldsymbol{\varepsilon}\mathbf{E})=0\right\}$ for a perfect conducting boundary.

Let $Q = \Omega \times (0,T)$ be the space-time cylinder. We define $H = L_2(0,T;V(A)) \subset L_2(Q)$, and we consider the space-time operator $L = M\partial t + A$ defined on $U = \mathcal{D}(L)$, where we assume that U is closed with respect to the graph norm of L. Our analysis is based on the a-priori bound

$$\|\mathbf{u}\|_H \le 2T \|L\mathbf{u}\|_H,$$

which shows that solution of the equation $L\mathbf{u} = \mathbf{f}$ is unique. Note that L is skew-adjoint, i.e., $(L\mathbf{u}, \mathbf{v})_Q = -(\mathbf{u}, L\mathbf{v})_Q$.

For a given decomposition of the space-time cylinder $\bar{Q} = \bigcup \bar{\tau}$ into space-time cells $\tau = K \times I$ we discuss three discretizations.

A discontinuous Galerkin method (dG) Let $V_h \subset L_2(\Omega)^J$ be a discontinuous space of polynomials with variable degree, and let A_h be the discontinuous Galerkin operator with full upwind flux, see [1]. In every time slice $\Omega \times (t_{n-1}, t_n)$ we use the implicit mid-point rule; note that this is unconditionally stable. This allows for an adaptive local refinement of the spacetime discretization and for a parallel multigrid preconditioner on the refinement hierarchy, where the full problem on the coarsest level is solved with a parallel direct solver [2].

A discontinuous Petrov-Galerkin method (DPG) On every space-time cell τ , integration by parts yields

$$(L\mathbf{u}, \mathbf{v})_{\tau} = -(\mathbf{u}, L\mathbf{v})_{\tau} + \langle \gamma_{\tau} \mathbf{u}, \gamma_{\tau}^* \mathbf{v} \rangle_{\tau},$$

where γ_{τ} is the trace operator of $U|_{\tau}$ to values on $\partial \tau$, and γ_{τ}^* is its adjoint. Let $\hat{U} = \prod \gamma_{\tau}(U|_{\tau})$ be the global trace space. The DPG method computes an approximation $(\hat{\mathbf{u}}_{\tau}) \in \hat{U}$ of the trace and local discontinuous approximations $\mathbf{u}_{\tau} \in L_2(\tau)^J$ such that

$$-(\mathbf{u}_{\tau}, L\mathbf{v}_{\tau})_{\tau} + \langle \hat{\mathbf{u}}_{\tau}, \gamma_{\tau}^* \mathbf{v}_{\tau} \rangle_{\tau} = (\mathbf{f}, \mathbf{v}_{\tau})_{\tau}$$

for all test functions \mathbf{v}_{τ} in an optimal test space. In this setting, optimal space-time a priori estimates exist [4], and the trace approximation is determined by a symmetric positive definite Schur complement problem which can be preconditioned efficiently by multigrid methods [3].

A hybrid discontinuous Petrov-Galerkin method (hDPG) A hybrid variant of the DPG method is formally obtained by choosing a nonconforming approximation of the trace space. This makes the data structure and a parallel communication more flexible. Again this allows for a symmetric positive definite Schur complement reduction.

References

- [1] M. Hochbruck, T. Pazur, A. Schulz, E. Thawinan, and C. Wieners. Efficient time integration for discontinuous Galerkin approximations of linear wave equations. 2013. In preparation.
- [2] D. Maurer and C. Wieners. A parallel block LU decomposition method for distributed finite element matrices. Parallel Computing, 37:742–758, 2011.
- [3] C. Wieners. A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. Computing and Visualization in Science 13:161-175, 2010.
- [4] C. Wieners and B. Wohlmuth. Robust operator estimates and the application to substructuring methods for first-order systems. 2013. Submitted.