Sparse space-time Petrov-Galerkin discretizations for parabolic evolution equations

Roman Andreev

Seminar for Applied Mathematics / ETH Zürich
(academic guest)
andreevr@math.ethz.ch

Jun 18, 2013

Support

- Swiss NSF 127034 \& ERC AdG 247277 during PhD thesis, advisor: Ch. Schwab, ETH Zürich
- Partly joint work with C. Tobler
- Travel support: LMS R115785 ERZ (S. Güttel)

References

- arXiv, 2012: Space-time discretization of the heat equation. A concise Matlab implementation (and further references).

Space-time simultaneous finite element discretizations for

$$
\begin{aligned}
\left(\partial_{t}-\nabla \cdot a(t, x) \nabla\right) u(t, x) & =f(t, x) \quad \text { in } J \times D, \\
u(0, x) & =g(x) \text { in } D, \\
u(t, x) & =0 \text { on } J \times \partial D,
\end{aligned}
$$

and preconditioning of the resulting linear algebraic system.

- $J=(0, T)$ temporal interval
- $D \subset \mathbb{R}^{d}$ bounded domain
- $a=$ diffusion coefficient

$$
\begin{array}{r}
\left(a \in L^{\infty}(J \times D)\right) \\
\left(f \in L^{2}\left(J ; H^{-1}(D)\right)\right) \\
\left(g \in L^{2}(D)\right)
\end{array}
$$

- $f=$ source
- $g=$ initial value

Space-time simultaneous finite element discretizations for

$$
\begin{aligned}
\left(\partial_{t}-\nabla \cdot a(t, x) \nabla\right) u(t, x) & =f(t, x) \quad \text { in } J \times D, \\
u(0, x) & =g(x) \text { in } D, \\
u(t, x) & =0 \text { on } J \times \partial D,
\end{aligned}
$$

and preconditioning of the resulting linear algebraic system.

- various space-time variational formulations are available
- quasi-optimality (cf. Céa's lemma) from space-time stability
- massively parallel space-time compressive algorithms
- low regularity assumptions on a, f and g, but none on u
- high order approximation in time and space possible
- space-time error control; towards space-time adaptivity
- novel parabolic multilevel preconditioners
- application:

Space-time simultaneous finite element discretizations for

$$
\begin{aligned}
\left(\partial_{t}-\nabla \cdot a(t, x) \nabla\right) u(t, x) & =f(t, x) \quad \text { in } J \times D, \\
u(0, x) & =g(x) \text { in } D, \\
u(t, x) & =0 \text { on } J \times \partial D,
\end{aligned}
$$

and preconditioning of the resulting linear algebraic system.
Example: given $u^{\star} \in L^{2}(J \times D)$ and $\alpha>0$, minimize

$$
\left\|u-u^{\star}\right\|_{L^{2}(J \times D)}^{2}+\alpha\|(f, g)\|^{2}
$$

where u solves the parabolic PDE. The mapping $(f, g) \mapsto u$ enters the optimality conditions. \rightsquigarrow "correct" discretization?

Target state

Computed control

Computed state

Space-time simultaneous finite element discretizations for

$$
\begin{aligned}
\left(\partial_{t}-\nabla \cdot a(t, x) \nabla\right) u(t, x) & =f(t, x) \quad \text { in } J \times D, \\
u(0, x) & =g(x) \text { in } D, \\
u(t, x) & =0 \text { on } J \times \partial D,
\end{aligned}
$$

and preconditioning of the resulting linear algebraic system.
Suppose $a=1, f=0$, and $-\Delta g=\lambda^{2} g$, then

$$
u(t, x)=w(t) g(x), \quad\left(\partial_{t}+\lambda^{2}\right) w(t)=0 \quad \text { on } \quad J, \quad w(0)=1 .
$$

This motivates the variational formulation: find $w \in H^{1}(J)$ s.t.

$$
\int_{J}\left(\partial_{t} w+\lambda^{2} w\right) v_{1} \mathrm{~d} t+w(0) v_{0} \stackrel{!}{=} 1 v_{0} \quad \forall v_{1} \in L^{2}(J), v_{0} \in \mathbb{R}
$$

This set-up will suffice to exhibit the main difficulty with $u \mapsto u_{L}$.

For $w \in H^{1}(J)$ and $v=\left(v_{0}, v_{1}\right) \in \mathbb{R} \times L^{2}(J)$ define B_{λ} and F by $\left\langle B_{\lambda} w, v\right\rangle:=\int_{J}\left(\partial_{t} w+\lambda^{2} w\right) v_{1} \mathrm{~d} t+w(0) v_{0} \quad$ and $\quad\langle F, v\rangle:=1 v_{0}$.
The variational formulation thus reads:

$$
\text { Find } u \in X: \quad\left\langle B_{\lambda} u, v\right\rangle=\langle F, v\rangle \quad \forall v \in Y
$$

where $X:=H^{1}(\mathrm{~J})$ and $Y:=\mathbb{R} \times L^{2}(\mathrm{~J})$.
It is well-posed only if any perturbation $B_{\lambda}(u+w)-B_{\lambda} u$ can be detected by some test function v :

$$
\gamma:=\inf _{w \neq 0} \sup _{v \neq 0} \frac{\left\langle B_{\lambda} w, v\right\rangle}{\|w\|\|v\|}>0
$$

For $w \in H^{1}(J)$ and $v=\left(v_{0}, v_{1}\right) \in \mathbb{R} \times L^{2}(J)$ define B_{λ} and F by $\left\langle B_{\lambda} w, v\right\rangle:=\int_{J}\left(\partial_{t} w+\lambda^{2} w\right) v_{1} \mathrm{~d} t+w(0) v_{0} \quad$ and $\quad\langle F, v\rangle:=1 v_{0}$.
First attempt at a discrete variational formulation:
Find $u_{L} \in X_{L}: \quad\left\langle B_{\lambda} u_{L}, v_{L}\right\rangle=\left\langle F, v_{L}\right\rangle \quad \forall v_{L} \in Y_{L}$
where $X_{L} \subset H^{1}(J)$ and $Y_{L} \subset \mathbb{R} \times L^{2}(J)$ finite-dimensional.
It is well-posed only if any perturbation $B_{\lambda}\left(u_{L}+w_{L}\right)-B_{\lambda} u_{L}$ can be detected by some test function v_{L} :

$$
\gamma_{L}:=\inf _{w_{L} \neq 0} \sup _{v_{L} \neq 0} \frac{\left\langle B_{\lambda} w_{L}, v_{L}\right\rangle}{\left\|w_{L}\right\|\left\|v_{L}\right\|}>0
$$

For $w \in H^{1}(J)$ and $v=\left(v_{0}, v_{1}\right) \in \mathbb{R} \times L^{2}(J)$ define B_{λ} and F by $\left\langle B_{\lambda} w, v\right\rangle:=\int_{J}\left(\partial_{t} w+\lambda^{2} w\right) v_{1} \mathrm{~d} t+w(0) v_{0} \quad$ and $\quad\langle F, v\rangle:=1 v_{0}$.

First attempt at a discrete variational formulation:
Find $u_{L} \in X_{L}: \quad\left\langle B_{\lambda} u_{L}, v_{L}\right\rangle=\left\langle F, v_{L}\right\rangle \quad \forall v_{L} \in Y_{L}$
where $X_{L} \subset H^{1}(J)$ and $Y_{L} \subset \mathbb{R} \times L^{2}(J)$ finite-dimensional.
A family of subspaces X_{L}, Y_{L}, parameterized by "level" L, is called space-time stable if $\gamma_{L} \geq \gamma>0$ in

$$
\gamma_{L}:=\inf _{w_{L} \neq 0} \sup _{v_{L} \neq 0} \frac{\left\langle B_{\lambda} w_{L}, v_{L}\right\rangle}{\left\|w_{L}\right\|\left\|v_{L}\right\|}>0 .
$$

Outline of the talk

- The "natural" X_{L} and Y_{L} are not space-time stable.
- Abstract stable MinRes discrete variational formulation.
- Space-time (sparse) discretization of the heat equation.
- Novel parabolic multilevel preconditioners.

The "natural" X_{L} and Y_{L} are not space-time stable

Take
\downarrow finite set of nodes

- temporal mesh $\mathcal{T}_{L}=\left\{\inf \mathrm{J}=: t_{0}<t_{1}<\ldots<t_{2 L+1}:=\sup J\right\}$
- $X_{L} \subset H^{1}(J)$ continuous piecewise affine on \mathcal{T}_{L}
- $Y_{L}:=\mathbb{R} \times \partial_{t} X_{L} \subset \mathbb{R} \times L^{2}(\mathrm{~J})$ piecewise constant on \mathcal{T}_{L}

$\operatorname{dim} X_{L}=9$

$\operatorname{dim} Y_{L}=1+8$

The "natural" X_{L} and Y_{L} are not space-time stable

Take $\quad \downarrow$ finite set of nodes

- temporal mesh $\mathcal{T}_{L}=\left\{\inf \mathrm{J}=: t_{0}<t_{1}<\ldots<t_{2 L+1}:=\sup J\right\}$
- $X_{L} \subset H^{1}(\mathrm{~J})$ continuous piecewise affine on \mathcal{T}_{L}
- $Y_{L}:=\mathbb{R} \times \partial_{t} X_{L} \subset \mathbb{R} \times L^{2}(\mathrm{~J})$ piecewise constant on \mathcal{T}_{L}

This is equivalent to Crank-Nicolson time-stepping, see

- B.L. Hulme, One-step pw. polynomial Galerkin [...], 1972
- G. Akrivis, Ch.G. Makridakis, R.H. Nochetto, Galerkin and Runge-Kutta [...], 2011

The "natural" X_{L} and Y_{L} are not space-time stable

Take $\quad \downarrow$ finite set of nodes

- temporal mesh $\mathcal{T}_{L}=\left\{\inf \mathrm{J}=: t_{0}<t_{1}<\ldots<t_{2 L+1}:=\sup J\right\}$
- $X_{L} \subset H^{1}(\mathrm{~J})$ continuous piecewise affine on \mathcal{T}_{L}
- $Y_{L}:=\mathbb{R} \times \partial_{t} X_{L} \subset \mathbb{R} \times L^{2}(\mathrm{~J})$ piecewise constant on \mathcal{T}_{L}

Do we have stability

$$
\gamma_{L}:=\inf _{w_{L} \neq 0} \sup _{v_{L} \neq 0} \frac{\left\langle B_{\lambda} w_{L}, v_{L}\right\rangle}{\left\|W_{L}\right\|_{\lambda}\left\|v_{L}\right\|_{\lambda}} \geq \gamma>0
$$

uniformly in $\lambda>0$ (and independently of u)?

The norms $\|\cdot\|_{\lambda}$ allow to generalize to the parabolic PDE.

The "natural" X_{L} and Y_{L} are not space-time stable

A unit-norm $w \in X_{L}$ that realizes the worst case $\gamma_{L} \approx 0.0848$
cf. I. Babuška and T. Janik, The h-p [...] for parabolic equations. II., 1990, also for the discussion of the Crank-Nicolson time-stepping method.

The "natural" X_{L} and Y_{L} are not space-time stable

A unit-norm $w \in X_{L}$ that realizes the worst case $\gamma_{L} \approx 0.0848$ and its best-detecting unit-norm $v_{1} \in \partial_{t} X_{L}$

May get arbitrarily small for some temporal mesh

The "natural" X_{L} and Y_{L} are not space-time stable

A unit-norm $w \in X_{L}$ that realizes the worst case $\gamma_{L} \approx 0.8671 \geq \sqrt{3 / 4}$ and its best-detecting unit-norm $v_{1} \in \partial_{t} X_{L+1}$

Cannot get much worse for any temporal mesh

The "natural" X_{L} and Y_{L} are not space-time stable

A unit-norm $w \in X_{L}$ that realizes the worst case $\gamma_{L} \approx 0.9685 \geq \sqrt{15 / 16}$ and its best-detecting unit-norm $v_{1} \in \partial_{t} X_{L+2}$

Cannot get much worse for any temporal mesh

The "natural" X_{L} and Y_{L} are not space-time stable

How to incorporate the finer test space \uparrow in the discrete variational formulation?

Abstract stable MinRes discrete variational formulation

Let

- X and Y be real Hilbert spaces,
- $B: X \rightarrow Y^{\prime}$ be a bounded linear operator,
- $X_{L} \subset X$ and $Y_{L} \subset Y$ be finite-dimensional subspaces,
- the pair X_{L}, Y_{L} satisfy the discrete inf-sup condition $\gamma_{L}>0$,

$$
\gamma_{L}:=\inf _{w_{L} \neq 0} \sup _{v_{L} \neq 0} \frac{\left\langle B w_{L}, v_{L}\right\rangle}{\left\|w_{L}\right\|\left\|v_{L}\right\|}>0
$$

Abstract stable MinRes discrete variational formulation

Let

- X and Y be real Hilbert spaces,
- $B: X \rightarrow Y^{\prime}$ be a bounded linear operator,
- $X_{L} \subset X$ and $Y_{L} \subset Y$ be finite-dimensional subspaces,
- the pair X_{L}, Y_{L} satisfy the discrete inf-sup condition $\gamma_{L}>0$.

Let $u \in X$. Given $B u$, the goal is to
find $u_{L} \in X_{L}$ such that $B u \approx B u_{L}$.

Remarks

- No assumption on B^{-1}.
- $\operatorname{dim} X_{L}<\operatorname{dim} Y_{L}$ is ok.

Abstract stable MinRes discrete variational formulation

Let

- X and Y be real Hilbert spaces,
- $B: X \rightarrow Y^{\prime}$ be a bounded linear operator,
- $X_{L} \subset X$ and $Y_{L} \subset Y$ be finite-dimensional subspaces,
- the pair X_{L}, Y_{L} satisfy the discrete inf-sup condition $\gamma_{L}>0$.

Thm. For each $u \in X$ there exists a unique $T_{L} u \in X_{L}$ such that

$$
R_{L}\left(T_{L} u\right) \leq \inf _{w_{L} \in X_{L}} R_{L}\left(w_{L}\right), \quad R_{L}\left(w_{L}\right):=\sup _{v_{L} \neq 0} \frac{\left|\left\langle B u-B w_{L}, v_{L}\right\rangle\right|}{\left\|v_{L}\right\|}
$$

The map T_{L} is linear, $T_{L}^{2}=T_{L}$, and $\left\|T_{L}\right\| \leq \gamma_{L}^{-1}\|B\|$. Therefore,

$$
\left\|u-T_{L} u\right\| \leq \frac{\|B\|}{\gamma_{L}} \inf _{w_{L} \in X_{L}}\left\|u-w_{L}\right\| \quad \text { (quasi-optimality) }
$$

Abstract stable MinRes discrete variational formulation

Given $X_{L} \subset X$ and $Y_{L} \subset Y$ with $\gamma_{L}>0$, the MinRes solution to

$$
B u=F \in Y^{\prime}
$$

is therefore well-defined as the residual minimizer,

$$
u_{L}:=\underset{w_{L} \in X_{L}}{\arg \min } R_{L}\left(w_{L}\right), \quad R_{L}\left(w_{L}\right):=\sup _{v_{L} \neq 0} \frac{\left|\left\langle F-B w_{L}, v_{L}\right\rangle\right|}{\left\|v_{L}\right\|} .
$$

Operator preconditioning: With bases for X_{L} and Y_{L}, the sol'n u_{L} is approximated by iterating on the linear algebraic system

$$
\mathbf{M}^{-1} \mathbf{B}^{\top} \mathbf{N}^{-1} \mathbf{B u}=\mathbf{M}^{-1} \mathbf{B}^{\top} \mathbf{N}^{-1} \mathbf{F},
$$

where the matrices \mathbf{N} and \mathbf{M} measure the Y and the X norms. The condition number is controlled by γ_{L}^{-1}.

On the heat equation: a selection of related efforts

- I. Babuška and T. Janik, The h-p version [...], 1990
- G. Horton and S. Vandewalle, A space-time multigrid method [...], 1995 W. Hackbusch, Parabolic multi-grid methods, 1984
- D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for [...] parabolic equations based on Laplace transformation [...], 2003
- M. Griebel and D. Oeltz, A sparse grid space-time [...], 2007
- M.J. Gander and S. Vandewalle, Analysis of the parareal [...], 2007
- Y. Maday and E.M. Rønquist, Parallelization in time through tensor-product space-time solvers, 2008
- Ch. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, 2009
- N.G. Chegini and R. Stevenson, Adaptive wavelet schemes [...], 2011
- L. Banjay and D. Peterseim, Parallel multistep methods [...], 2011
- M. Neumüller and O. Steinbach, Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods, 2011
- A. Chernov and Ch. Schwab, Sparse space-time Galerkin BEM for the nonstationary heat equation, 2012
- S.V. Dolgov, B.N. Khoromskij, and I.V. Oseledets, Fast solution of parabolic problems in the TT/QTT format, 2012

On the heat equation: variational formulation

Define the spaces

- $X:=L^{2}(J ; V) \cap H^{1}\left(J ; V^{\prime}\right)$, where $V:=H_{0}^{1}(D)$,
- $Y:=H \times L^{2}(J ; V)$, where $H:=L^{2}(D)$.

Encode the heat eq'n in a space-time variational formulation

$$
\text { Find } \quad u \in X: \quad\langle B u, v\rangle=\langle F, v\rangle \quad \forall v \in Y
$$

with the bounded linear operators $B: X \rightarrow Y^{\prime}$ and $F \in Y^{\prime}$:

$$
\begin{aligned}
\langle B w, v\rangle & :=\int_{J}\left\langle\partial_{t} w-\nabla \cdot a \nabla w, v_{1}\right\rangle \mathrm{d} t+\left(w(0), v_{0}\right)_{L^{2}(D)} \\
\langle F, v\rangle & :=\int_{J}\left\langle f, v_{1}\right\rangle \mathrm{d} t+\left(g, v_{0}\right)_{L^{2}(D)}
\end{aligned}
$$

Studied by Ch. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, 2009

On the heat equation: variational formulation

Define the spaces

- $X:=L^{2}(J ; V) \cap H^{1}\left(J ; V^{\prime}\right)$, where $V:=H_{0}^{1}(D)$,
- $Y:=H \times L^{2}(J ; V)$, where $H:=L^{2}(D)$.

Encode the heat eq'n in a space-time variational formulation

$$
\text { Find } \quad u \in X: \quad\langle B u, v\rangle=\langle F, v\rangle \quad \forall v \in Y
$$

Default norms on X and Y :

$$
\begin{array}{rlr}
\|w\|_{X}^{2}:=\left\|\partial_{t} w\right\|_{L^{2}\left(J ; V^{\prime}\right)}^{2}+\|w\|_{L^{2}(J ; V)}^{2}, & w \in X, \\
\|v\|_{Y}^{2}:=\left\|v_{0}\right\|_{H}^{2}+\left\|v_{1}\right\|_{L^{2}(J ; V)}^{2}, & v=\left(v_{0}, v_{1}\right) \in Y .
\end{array}
$$

The norm on V is the H^{1}-seminorm.

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_{0}$)

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(J)$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(J)$ such that the compatibility condition

$$
\tau:=\inf _{L \in \mathbb{N}}\left[\inf _{e \in \partial_{t} E_{L}+E_{L} \backslash\{0\}} \sup _{f \in F_{L} \backslash\{0\}} \frac{(e, f)_{L^{2}(J)}}{\|e\|_{L^{2}(J)}\|f\|_{L^{2}(J)}}\right]>0
$$

holds. For example,

- $E_{L}=F_{L}=\{$ polynomials up to degree $L\}, \quad$ (Babuška \& Janik)
- $E_{L}=F_{L}=\{\sin +\cos$ up to frequency $L\}$, (Langer \& Wolfmayr)
- $F_{L}=\partial_{t} E_{L}+E_{L}$,
- $E_{L}=\left\{\sim 2^{L}\right.$ hats on uniform mesh $\}, F_{L}=E_{L+1}$.

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces $\left(L \in \mathbb{N}_{0}\right)$

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(\mathrm{~J})$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(\mathrm{~J})$ with $\tau>0$,

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_{0}$)

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(J)$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(J)$ with $\tau>0$,
- $V_{L} \subseteq V_{L+1} \subseteq V$ such that the "approximate self-duality" condition

$$
\kappa:=\inf _{L \in \mathbb{N}}\left[\inf _{\chi^{\prime} \in V_{L} \backslash\{0\}} \sup _{\chi \in V_{L} \backslash\{0\}} \frac{\left(\chi^{\prime}, \chi\right)_{H}}{\left\|\chi^{\prime}\right\|_{V^{\prime}}\left\|_{\chi}\right\|_{V}}\right]>0
$$

holds. For example,

- wavelet Riesz bases for V^{\prime}, H, and V, (Schwab \& Stevenson)
- P1 FEM on quasi-uniform meshes, (Babuška \& Janik)
- if the H-projection is V-stable. (cf. Bramble, Pasciak \& Steinbach)

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces $\left(L \in \mathbb{N}_{0}\right)$

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(\mathrm{~J})$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(\mathrm{~J})$ with $\tau>0$,
- $V_{L} \subseteq V_{L+1} \subseteq V$ with $\kappa>0$,

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_{0}$)

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(J)$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(J)$ with $\tau>0$,
- $V_{L} \subseteq V_{L+1} \subseteq V$ with $\kappa>0$,
- $X_{L} \times Y_{L} \subseteq X \times Y$ as the space-time full tensor product

$$
x_{L}:=E_{L} \otimes V_{L}, \quad Y_{L}:=V_{L} \times\left[F_{L} \otimes V_{L}\right]
$$

discrete trial and test spaces, or ...

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_{0}$)

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(J)$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(J)$ with $\tau>0$,
- $V_{L} \subseteq V_{L+1} \subseteq V$ with $\kappa>0$,
- $X_{L} \times Y_{L} \subseteq X \times Y$ as the space-time full tensor product

$$
x_{L}:=E_{L} \otimes V_{L}, \quad Y_{L}:=V_{L} \times\left[F_{L} \otimes V_{L}\right]
$$

or the sparse tensor product

$$
x_{L}:=\sum_{0 \leq k+\ell \leq L} E_{k} \otimes V_{\ell}, \quad Y_{L}:=V_{L} \times \sum_{0 \leq k+\ell \leq L}\left[F_{k} \otimes V_{\ell}\right]
$$

discrete trial and test spaces.

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces $\left(L \in \mathbb{N}_{0}\right)$

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(J)$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(J)$ with $\tau>0$,
- $V_{L} \subseteq V_{L+1} \subseteq V$ with $\kappa>0$,
- $X_{L} \times Y_{L} \subseteq X \times Y$ as the FTP or the STP subspaces.

On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_{0}$)

- $E_{L} \subseteq E_{L+1} \subseteq H^{1}(J)$ and $F_{L} \subseteq F_{L+1} \subseteq L^{2}(J)$ with $\tau>0$,
- $V_{L} \subseteq V_{L+1} \subseteq V$ with $\kappa>0$,
- $X_{L} \times Y_{L} \subseteq X \times Y$ as the FTP or the STP subspaces.

Theorem
There exists $c>0$ such that

$$
\inf _{L \in \mathbb{N}} \gamma_{L} \geq c \tau \kappa .
$$

In fact, $c=1$ if $a \equiv 1$ and the norm on X is taken as

$$
\|w\|_{X}^{2}=\left\|\partial_{t} w\right\|_{L^{2}\left(J ; V^{\prime}\right)}^{2}+\|w\|_{L^{2}(J ; V)}^{2}+\|w(T)\|_{H^{2}}^{2} .
$$

On the heat equation: Conditional space-time stability

Take

- $E_{L} \subset H^{1}(\mathrm{~J}) \mathrm{pw}$. polynomial on any temporal mesh \mathcal{T}_{L},
- $V_{L} \subset V$ any nontrivial finite-dimensional subspace,
- $X_{L}:=E_{L} \otimes V_{L}$ and $Y_{L}:=V_{L} \times\left[\partial_{t} E_{L} \otimes V_{L}\right] \quad$ ($\equiv \mathrm{cG}$ method).

Theorem
There exists $c>0$ such that

$$
\gamma_{L} \geq c \kappa \min \left\{1, \mathrm{CFL}_{L}^{-1}\right\}
$$

where

$$
\mathrm{CFL}_{L}:=\max \Delta \mathcal{T} \times \sup _{\chi \in V_{L} \backslash\{0\}} \frac{\|\chi\| V}{\|\chi\|_{V^{\prime}}} \quad \sim \Delta t \times \frac{1}{\Delta x^{2}}
$$

The dependence on CFL_{L} cannot be improved, in general.

On the heat equation: Example 1

Set-up

- equidistant temporal mesh $\mathcal{T}_{L}=\left\{k 2^{-L}: k=0, \ldots, 2^{L+1}\right\}$
- L-shaped domain $D \subset \mathbb{R}^{2}$
- $V_{0} \subset H_{0}^{1}(D)$ P1 FEM on a simplicial triangulation (pdetool)
- X_{L} continuous piecewise affine on \mathcal{T}_{L} with values in V_{0}
- $Y_{L}:=V_{0} \times \partial_{t} X_{L}$ piecewise constant on \mathcal{T}_{L}
- source $f(t, x):=\sin (t)$, initial condition $g(x):=0$

Corollary.

- The family X_{L}, Y_{L+1} is space-time stable.
- The family $X_{L}, Y_{L}(\mathrm{C}-\mathrm{N})$ is conditionally space-time stable.

Figure: Solution to the heat equation on the L-shaped domain (snapshot, almost uniform triangular mesh, 32'705 spatial dof's).

Figure: Number of iterations for the "operator preconditioned LSQR" for Y_{L} vs. Y_{L+1} as test space (GNE tol. 10^{-4}). The effect of γ_{L} is seen.

On the heat equation: Example 2

Consider the semi-linear parabolic PDE

$$
\partial_{t} u(t, x)-\partial_{x x} u(t, x)+10 u(t, x)^{3}=f(t, x), \quad(t, x) \in J \times D
$$

in $J \times D=(0,2) \times(-1,1)$, with zero I.C. and zero Dirichlet B.C.
The problem is of the form

$$
B u+G(u)=F
$$

which we solve using the fixed point iteration

$$
u_{L}^{i}:=\left[w \mapsto T_{L} B^{-1}(F-G(w))\right]^{i}(0), \quad i=0,1, \ldots .
$$

On the heat equation: Example 2

Consider the semi-linear parabolic PDE

$$
\partial_{t} u(t, x)-\partial_{x x} u(t, x)+10 u(t, x)^{3}=f(t, x), \quad(t, x) \in J \times D
$$

We define

- $E_{L} \subset H^{1}(J)$ pw. affine on uniform mesh with $\Delta t=2^{-L}$,
- $V_{L} \subset H_{0}^{1}(D)$ pw. affine on uniform mesh with $\Delta x=2^{-L}$, and the space-time full tensor product trial \& test spaces

$$
X_{L}:=E_{L} \otimes V_{L}, \quad Y_{L}:=V_{L} \times\left[E_{L+1} \otimes V_{L}\right]
$$

On the heat equation: Example 2

Consider the semi-linear parabolic PDE

$$
\partial_{t} u(t, x)-\partial_{x x} u(t, x)+10 u(t, x)^{3}=f(t, x), \quad(t, x) \in J \times D
$$

We define

- $E_{L} \subset H^{1}(J)$ pw. affine on uniform mesh with $\Delta t=2^{-L}$,
- $V_{L} \subset H_{0}^{1}(D)$ pw. affine on uniform mesh with $\Delta x=2^{-L}$, and the space-time sparse tensor product trial \& test spaces

$$
X_{L}:=\sum_{0 \leq k+\ell \leq L} E_{k} \otimes V_{\ell}, \quad Y_{L}:=V_{L} \times \sum_{0 \leq k+\ell \leq L}\left[E_{k+1} \otimes V_{\ell}\right]
$$

On the heat equation: Example 2

Summary of parameters:

- level of discretization: $L=0,1, \ldots, 7$
- number of fixed point iterations: $i=0,1, \ldots, 8$
- full tensor product (FTP) solution: u_{L}^{i}
- sparse tensor product (STP) solution: \widehat{u}_{L}^{i}
- reference solution: FTP with $L=8$ and $i=10$

The PDE data:

- $\partial_{t} u(t, x)-\partial_{x x} u(t, x)+10 u(t, x)^{3}=f(t, x)$
- $f(t, x)=\sin (\pi t / 2)^{2} \cos (\cos (\pi t / 2)+x)$
- is posed on $\mathrm{J} \times D=(0,2) \times(-1,1)$
- zero initial value
- homogeneous Dirichlet boundary conditions

Figure: The solution u (left) and the source f (right)

Note: $\left\|10 u^{3}\right\|_{L^{\infty}(J \times D)} \approx \frac{1}{6}\|f\|_{L^{\infty}(J \times D)}$.

Figure: Error of the FTP u_{L}^{i} and the STP \widehat{u}_{L}^{i} solutions for fixed $i=10$ as a function of the total number of degrees of freedom, $L=0, \ldots, 7$

Figure: Error of the FTP u_{L}^{i} and the STP \widehat{u}_{L}^{i} solutions for $L=0, \ldots, 7$ as a function of the iteration number i

Parabolic multilevel preconditioners

Operator preconditioning: With bases for X_{L} and Y_{L}, the sol'n u_{L} is approximated by iterating on the linear algebraic system

$$
\mathbf{M}^{-1} \mathbf{B}^{\top} \mathbf{N}^{-1} \mathbf{B u}=\mathbf{M}^{-1} \mathbf{B}^{\top} \mathbf{N}^{-1} \mathbf{F}
$$

where the matrices \mathbf{N} and \mathbf{M} measure the Y and the X norms, possibly only approximately.

Parabolic multilevel preconditioners: variant A

Proposition
An s.p.d. isomorphism $M: X \rightarrow X^{\prime}$ on $X=L^{2}(\mathrm{~J} ; V) \cap H^{1}\left(\mathrm{~J} ; V^{\prime}\right)$ is defined by

$$
\langle M w, w\rangle:=\sum_{k, \ell \in \mathbb{N}}\left\{2^{0 k} 2^{2 \ell}+2^{2 k} 2^{-2 \ell}\right\}\left\|\left(P_{k}^{\Delta} \otimes Q_{\ell}^{\Delta}\right) w\right\|_{L^{2}(J ; H)}^{2}
$$

where P_{k}^{Δ} and Q_{ℓ}^{Δ} are suitable projections on $L^{2}(\mathrm{~J})$ and H.
Then, \mathbf{M}^{-1} is obtained from M^{-1}.
An s.p.d. isomorphism

$$
N: Y \rightarrow Y^{\prime} \quad \text { on } \quad H \times Y=L^{2}(\mathrm{~J} ; V)
$$

can be defined analogously.

Parabolic multilevel preconditioners: variant A

R.A. and C. Tobler, Multilevel preconditioning and low rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs, (2012)

Figure: Space-time MinRes PG coupled with the htucker toolbox: error of the solution computed in the hierarchical Tucker low rank format for a space-time problem of full size of up to 127PB

Parabolic multilevel preconditioners: variant B

The matrix

$$
\mathbf{M}=\mathbf{M}_{t} \otimes \mathbf{A}_{x}+\mathbf{A}_{t} \otimes\left(\mathbf{M}_{x} \mathbf{A}_{x}^{-1} \mathbf{M}_{x}\right)
$$

measures the X norm (via $\mathbf{w}^{\top} \mathbf{M w}$), where $\mathbf{M}_{t, x}$ is the mass and $\mathbf{A}_{t, x}$ is the stiffness matrix, subscript indicating time or space.

Diagonalize \mathbf{M}_{t} and \mathbf{A}_{t} simultaneously by taking \mathbf{V}_{t} such that

$$
\mathbf{V}_{t}^{\top} \mathbf{M}_{t} \mathbf{V}_{t}=\mathbf{I}_{t} \quad \text { and } \quad \mathbf{V}_{t}^{\top} \mathbf{A}_{t} \mathbf{V}_{t}=\mathbf{D}_{t}
$$

are diagonal. Then

$$
\mathbf{M}^{-1}=\left(\mathbf{V}_{t} \otimes \mathbf{I}_{x}\right)\left(\mathbf{I}_{t} \otimes \mathbf{A}_{x}+\mathbf{D}_{t} \otimes\left(\mathbf{M}_{x} \mathbf{A}_{x}^{-1} \mathbf{M}_{x}\right)\right)^{-1}\left(\mathbf{V}_{t}^{\top} \otimes \mathbf{I}_{x}\right)
$$

Need to solve (many, approx., in parallel) problems of the form

$$
\left(\mathbf{A}_{x}+k^{2} \mathbf{M}_{x} \mathbf{A}_{x}^{-1} \mathbf{M}_{x}\right) \mathbf{w}=\ldots
$$

Parabolic multilevel preconditioners: variant B

Summary

- The "natural" X_{L} and Y_{L} are not space-time stable.
- Abstract stable MinRes discrete variational formulation.
- Space-time (sparse) discretization of the heat equation.
- Novel parabolic multilevel preconditioners.

References

- arXiv, 2012: Space-time discretization of the heat equation. A concise Matlab implementation (and further references).

Summary

- The "natural" X_{L} and Y_{L} are not space-time stable.
- Abstract stable MinRes discrete variational formulation.
- Space-time (sparse) discretization of the heat equation.
- Novel parabolic multilevel preconditioners.

References

- arXiv, 2012: Space-time discretization of the heat equation. A concise Matlab implementation (and further references).

Thank you!
this slide is intentionally left blank

