Sparse space-time Petrov-Galerkin discretizations for parabolic evolution equations

Roman Andreev

Seminar for Applied Mathematics / ETH Zürich (academic guest) andreevr@math.ethz.ch

Jun 18, 2013

Support

- Swiss NSF 127034 & ERC AdG 247277 during PhD thesis, advisor: Ch. Schwab, ETH Zürich
- Partly joint work with C. Tobler
- Travel support: LMS R115785 ERZ (S. Güttel)

References

arXiv, 2012: Space-time discretization of the heat equation. A concise Matlab implementation (and further references).

$$(\partial_t - \nabla \cdot \mathbf{a}(t, \mathbf{x}) \nabla) u(t, \mathbf{x}) = f(t, \mathbf{x}) \quad \text{in } \mathbf{J} \times \mathbf{D},$$

 $u(0, \mathbf{x}) = g(\mathbf{x}) \quad \text{in } \mathbf{D},$
 $u(t, \mathbf{x}) = 0 \quad \text{on } \mathbf{J} \times \partial \mathbf{D},$

and preconditioning of the resulting linear algebraic system.

- ► J = (0, T) temporal interval
- $D \subset \mathbb{R}^d$ bounded domain
- a = diffusion coefficient
- ▶ f = source
- g = initial value

 $(a \in L^{\infty}(J \times D))$ $(f \in L^{2}(J; H^{-1}(D)))$ $(q \in L^{2}(D))$

$$(\partial_t - \nabla \cdot \mathbf{a}(t, \mathbf{x}) \nabla) u(t, \mathbf{x}) = f(t, \mathbf{x}) \quad \text{in } \mathbf{J} \times \mathbf{D},$$

 $u(0, \mathbf{x}) = g(\mathbf{x}) \quad \text{in } \mathbf{D},$
 $u(t, \mathbf{x}) = 0 \quad \text{on } \mathbf{J} \times \partial \mathbf{D},$

and preconditioning of the resulting linear algebraic system.

- various space-time variational formulations are available
- quasi-optimality (cf. Céa's lemma) from space-time stability
- massively parallel space-time compressive algorithms
- Iow regularity assumptions on a, f and g, but none on u
- high order approximation in time and space possible
- space-time error control; towards space-time adaptivity
- novel parabolic multilevel preconditioners
- application:

$$(\partial_t - \nabla \cdot \mathbf{a}(t, \mathbf{x}) \nabla) u(t, \mathbf{x}) = f(t, \mathbf{x}) \quad \text{in } \mathbf{J} \times \mathbf{D},$$

 $u(0, \mathbf{x}) = g(\mathbf{x}) \quad \text{in } \mathbf{D},$
 $u(t, \mathbf{x}) = 0 \quad \text{on } \mathbf{J} \times \partial \mathbf{D},$

and preconditioning of the resulting linear algebraic system.

Example: given $u^* \in L^2(J \times D)$ and $\alpha > 0$, minimize

$$\|\boldsymbol{u}-\boldsymbol{u}^{\star}\|_{L^{2}(\mathsf{J}\times\boldsymbol{D})}^{2}+\alpha\|(\boldsymbol{f},\boldsymbol{g})\|^{2}$$

where *u* solves the parabolic PDE. The mapping $(f, g) \mapsto u$ enters the optimality conditions. \rightsquigarrow "correct" discretization?

$$(\partial_t - \nabla \cdot \mathbf{a}(t, \mathbf{x}) \nabla) u(t, \mathbf{x}) = f(t, \mathbf{x}) \quad \text{in } \mathbf{J} \times \mathbf{D},$$

 $u(0, \mathbf{x}) = g(\mathbf{x}) \quad \text{in } \mathbf{D},$
 $u(t, \mathbf{x}) = 0 \quad \text{on } \mathbf{J} \times \partial \mathbf{D},$

and preconditioning of the resulting linear algebraic system.

Suppose a = 1, f = 0, and $-\Delta g = \lambda^2 g$, then

$$u(t,x) = w(t)g(x), \quad (\partial_t + \lambda^2)w(t) = 0 \quad \text{on} \quad \mathsf{J}, \quad w(0) = 1.$$

This motivates the variational formulation: find $w \in H^1(J)$ s.t.

$$\int_{\mathsf{J}} (\partial_t w + \lambda^2 w) v_1 \mathrm{d}t + w(0) v_0 \stackrel{!}{=} 1 v_0 \quad \forall v_1 \in L^2(\mathsf{J}), v_0 \in \mathbb{R}.$$

This set-up will suffice to exhibit the main difficulty with $u \mapsto u_L$.

For $w \in H^1(J)$ and $v = (v_0, v_1) \in \mathbb{R} \times L^2(J)$ define B_λ and F by $\langle B_\lambda w, v \rangle := \int_J (\partial_t w + \lambda^2 w) v_1 dt + w(0) v_0$ and $\langle F, v \rangle := 1 v_0$.

The variational formulation thus reads:

Find $u \in X$: $\langle B_{\lambda}u, v \rangle = \langle F, v \rangle \quad \forall v \in Y$

where $X := H^1(J)$ and $Y := \mathbb{R} \times L^2(J)$.

It is well-posed only if any perturbation $B_{\lambda}(u + w) - B_{\lambda}u$ can be detected by some test function *v*:

$$\gamma := \inf_{w \neq 0} \sup_{v \neq 0} \frac{\langle B_{\lambda} w, v \rangle}{\|w\| \|v\|} > 0.$$

For $w \in H^1(J)$ and $v = (v_0, v_1) \in \mathbb{R} \times L^2(J)$ define B_λ and F by $\langle B_\lambda w, v \rangle := \int_J (\partial_t w + \lambda^2 w) v_1 dt + w(0) v_0$ and $\langle F, v \rangle := 1 v_0$.

First attempt at a **discrete** variational formulation:

Find $u_L \in X_L$: $\langle B_\lambda u_L, v_L \rangle = \langle F, v_L \rangle \quad \forall v_L \in Y_L$

where $X_L \subset H^1(J)$ and $Y_L \subset \mathbb{R} \times L^2(J)$ finite-dimensional.

It is well-posed only if any perturbation $B_{\lambda}(u_L + w_L) - B_{\lambda}u_L$ can be detected by some test function v_L :

$$\gamma_L := \inf_{w_L \neq 0} \sup_{v_L \neq 0} \frac{\langle B_\lambda w_L, v_L \rangle}{\|w_L\| \|v_L\|} > 0.$$

For $w \in H^1(J)$ and $v = (v_0, v_1) \in \mathbb{R} \times L^2(J)$ define B_λ and F by $\langle B_\lambda w, v \rangle := \int_J (\partial_t w + \lambda^2 w) v_1 dt + w(0) v_0$ and $\langle F, v \rangle := 1 v_0$.

First attempt at a **discrete** variational formulation:

Find $u_L \in X_L$: $\langle B_\lambda u_L, v_L \rangle = \langle F, v_L \rangle \quad \forall v_L \in Y_L$

where $X_L \subset H^1(J)$ and $Y_L \subset \mathbb{R} \times L^2(J)$ finite-dimensional.

A family of subspaces X_L , Y_L , parameterized by "level" L, is called **space-time stable** if $\gamma_L \ge \gamma > 0$ in

$$\gamma_L := \inf_{w_L \neq 0} \sup_{v_L \neq 0} \frac{\langle \boldsymbol{B}_{\lambda} w_L, \boldsymbol{v}_L \rangle}{\|w_L\| \|v_L\|} > 0.$$

Outline of the talk

- The "natural" X_L and Y_L are not space-time stable.
- Abstract stable MinRes discrete variational formulation.
- Space-time (sparse) discretization of the heat equation.
- Novel parabolic multilevel preconditioners.

Take

 \downarrow finite set of nodes

- ▶ temporal mesh $\mathcal{T}_L = \{ \inf J =: t_0 < t_1 < \ldots < t_{2^{L+1}} := \sup J \}$
- $X_L \subset H^1(J)$ continuous piecewise affine on \mathcal{T}_L
- $Y_L := \mathbb{R} \times \partial_t X_L \subset \mathbb{R} \times L^2(J)$ piecewise constant on \mathcal{T}_L

Take

 \downarrow finite set of nodes

- ▶ temporal mesh $\mathcal{T}_L = \{ \inf J =: t_0 < t_1 < \ldots < t_{2^{L+1}} := \sup J \}$
- $X_L \subset H^1(J)$ continuous piecewise affine on \mathcal{T}_L
- $Y_L := \mathbb{R} \times \partial_t X_L \subset \mathbb{R} \times L^2(J)$ piecewise constant on \mathcal{T}_L

This is equivalent to Crank-Nicolson time-stepping, see

B.L. Hulme,

One-step pw. polynomial Galerkin [...], 1972

 G. Akrivis, Ch.G. Makridakis, R.H. Nochetto, Galerkin and Runge-Kutta [...], 2011

Take

 \downarrow finite set of nodes

- ▶ temporal mesh $\mathcal{T}_L = \{ \inf J =: t_0 < t_1 < \ldots < t_{2^{L+1}} := \sup J \}$
- $X_L \subset H^1(J)$ continuous piecewise affine on \mathcal{T}_L
- $Y_L := \mathbb{R} \times \partial_t X_L \subset \mathbb{R} \times L^2(J)$ piecewise constant on \mathcal{T}_L

Do we have stability

$$\gamma_L := \inf_{w_L \neq 0} \sup_{v_L \neq 0} \frac{\langle B_\lambda w_L, v_L \rangle}{\|w_L\|_\lambda \|v_L\|_\lambda} \ge \gamma > 0$$

uniformly in $\lambda > 0$ (and independently of *u*)?

The norms $\|\cdot\|_{\lambda}$ allow to generalize to the parabolic PDE.

A unit-norm $w \in X_L$ that realizes the worst case $\gamma_L \approx 0.0848$

cf. I. Babuška and T. Janik, The h-p [...] for parabolic equations. II., **1990**, also for the discussion of the Crank-Nicolson time-stepping method.

A unit-norm $w \in X_L$ that realizes the worst case $\gamma_L \approx 0.0848$ and its best-detecting unit-norm $v_1 \in \partial_t X_L$

May get arbitrarily small for some temporal mesh

A unit-norm $w \in X_L$ that realizes the worst case $\gamma_L \approx 0.8671 \ge \sqrt{3/4}$ and its best-detecting unit-norm $v_1 \in \partial_t X_{L+1}$

Cannot get much worse for any temporal mesh

A unit-norm $w \in X_L$ that realizes the worst case $\gamma_L \approx 0.9685 \ge \sqrt{15/16}$ and its best-detecting unit-norm $v_1 \in \partial_t X_{L+2}$

Cannot get much worse for any temporal mesh

How to incorporate the finer test space ↑ in the discrete variational formulation?

Abstract stable MinRes discrete variational formulation

Let

- X and Y be real Hilbert spaces,
- $B: X \to Y'$ be a bounded linear operator,
- $X_L \subset X$ and $Y_L \subset Y$ be finite-dimensional subspaces,
- the pair X_L , Y_L satisfy the discrete inf-sup condition $\gamma_L > 0$,

$$\gamma_L := \inf_{w_L \neq 0} \sup_{v_L \neq 0} \frac{\langle Bw_L, v_L \rangle}{\|w_L\| \|v_L\|} > 0.$$

Abstract stable MinRes discrete variational formulation

Let

- X and Y be real Hilbert spaces,
- $B: X \to Y'$ be a bounded linear operator,
- $X_L \subset X$ and $Y_L \subset Y$ be finite-dimensional subspaces,
- the pair X_L , Y_L satisfy the discrete inf-sup condition $\gamma_L > 0$.

Let $u \in X$. Given Bu, the goal is to

find $u_L \in X_L$ such that $Bu \approx Bu_L$.

Remarks

- No assumption on B^{-1} .
- dim X_L < dim Y_L is ok.

Abstract stable MinRes discrete variational formulation

Let

- X and Y be real Hilbert spaces,
- $B: X \to Y'$ be a bounded linear operator,
- $X_L \subset X$ and $Y_L \subset Y$ be finite-dimensional subspaces,
- the pair X_L , Y_L satisfy the discrete inf-sup condition $\gamma_L > 0$.

Thm. For each $u \in X$ there exists a unique $T_L u \in X_L$ such that

$$R_L(T_L u) \leq \inf_{w_L \in X_L} R_L(w_L), \quad R_L(w_L) := \sup_{v_L \neq 0} \frac{|\langle Bu - Bw_L, v_L \rangle|}{\|v_L\|}.$$

The map T_L is linear, $T_L^2 = T_L$, and $||T_L|| \le \gamma_L^{-1} ||B||$. Therefore,

$$\|u - T_L u\| \le \frac{\|B\|}{\gamma_L} \inf_{w_L \in X_L} \|u - w_L\|$$
 (quasi-optimality)

Abstract stable MinRes discrete variational formulation Given $X_L \subset X$ and $Y_L \subset Y$ with $\gamma_L > 0$, the MinRes solution to

 $Bu = F \in Y'$

is therefore well-defined as the residual minimizer,

$$u_L := \operatorname*{arg\,min}_{w_L \in X_L} R_L(w_L), \quad R_L(w_L) := \operatorname*{sup}_{v_L
eq 0} rac{|\langle F - Bw_L, v_L
angle|}{\|v_L\|}.$$

Operator preconditioning: With bases for X_L and Y_L , the sol'n u_L is approximated by iterating on the linear algebraic system

$$\mathbf{M}^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{N}^{-1}\mathbf{B}\mathbf{u} = \mathbf{M}^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{N}^{-1}\mathbf{F},$$

where the matrices **N** and **M** measure the Y and the X norms. The condition number is controlled by γ_l^{-1} .

On the heat equation: a selection of related efforts

- I. Babuška and T. Janik, The h-p version [...], 1990
- G. Horton and S. Vandewalle, A space-time multigrid method [...], 1995
 W. Hackbusch, Parabolic multi-grid methods, 1984
- D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for [...] parabolic equations based on Laplace transformation [...], 2003
- M. Griebel and D. Oeltz, A sparse grid space-time [...], 2007
- M.J. Gander and S. Vandewalle, Analysis of the parareal [...], 2007
- Y. Maday and E.M. Rønquist, Parallelization in time through tensor-product space-time solvers, 2008
- Ch. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, 2009
- N.G. Chegini and R. Stevenson, Adaptive wavelet schemes [...], 2011
- L. Banjay and D. Peterseim, Parallel multistep methods [...], 2011
- M. Neumüller and O. Steinbach, Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods, 2011
- A. Chernov and Ch. Schwab, Sparse space-time Galerkin BEM for the nonstationary heat equation, 2012
- S.V. Dolgov, B.N. Khoromskij, and I.V. Oseledets, Fast solution of parabolic problems in the TT/QTT format, 2012

^{• ...}

On the heat equation: variational formulation

Define the spaces

- $X := L^2(\mathsf{J}; \mathbf{V}) \cap H^1(\mathsf{J}; \mathbf{V}')$, where $\mathbf{V} := H^1_0(D)$,
- $Y := H \times L^2(J; V)$, where $H := L^2(D)$.

Encode the heat eq'n in a space-time variational formulation

Find
$$u \in X$$
: $\langle Bu, v \rangle = \langle F, v \rangle \quad \forall v \in Y$

with the bounded linear operators $B: X \to Y'$ and $F \in Y'$:

$$egin{aligned} &\langle m{B}m{w},m{v}
angle &:= \int_{\mathsf{J}} \langle \partial_tm{w} -
abla \cdot m{a}
abla m{w},m{v_1}
angle \mathrm{d}t + (m{w}(0),m{v_0})_{L^2(D)}, \ &\langle m{F},m{v}
angle &:= \int_{\mathsf{J}} \langle f,m{v_1}
angle \mathrm{d}t + (m{g},m{v_0})_{L^2(D)}. \end{aligned}$$

Studied by Ch. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, **2009**

On the heat equation: variational formulation

Define the spaces

- $X := L^2(\mathsf{J}; \mathbf{V}) \cap H^1(\mathsf{J}; \mathbf{V}')$, where $\mathbf{V} := H^1_0(D)$,
- $Y := H \times L^2(J; V)$, where $H := L^2(D)$.

Encode the heat eq'n in a space-time variational formulation

Find
$$u \in X$$
: $\langle Bu, v \rangle = \langle F, v \rangle \quad \forall v \in Y.$

Default norms on X and Y:

$$\begin{split} \|w\|_X^2 &:= \|\partial_t w\|_{L^2(\mathsf{J};V')}^2 + \|w\|_{L^2(\mathsf{J};V)}^2, \qquad w \in X, \\ \|v\|_Y^2 &:= \|v_0\|_H^2 + \|v_1\|_{L^2(\mathsf{J};V)}^2, \qquad v = (v_0, v_1) \in Y. \end{split}$$

The norm on V is the H^1 -seminorm.

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

► $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ such that the compatibility condition

$$\tau := \inf_{L \in \mathbb{N}} \left[\inf_{e \in \partial_t E_L + E_L \setminus \{0\}} \sup_{f \in F_L \setminus \{0\}} \frac{(e, f)_{L^2(\mathsf{J})}}{\|e\|_{L^2(\mathsf{J})} \|f\|_{L^2(\mathsf{J})}} \right] > 0$$

holds. For example,

- $E_L = F_L = \{ \text{polynomials up to degree } L \},$ (Babuška & Janik)
- $E_L = F_L = {sin + cos up to frequency L}$, (Langer & Wolfmayr)
- $\bullet F_L = \partial_t E_L + E_L,$
- $E_L = \{\sim 2^L \text{ hats on uniform mesh}\}, F_L = E_{L+1}.$ (R.A.)
- $V_L \subseteq V_{L+1} \subseteq V$ $X_L \times Y_L \subseteq X \times Y$ as

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- $\blacktriangleright V_L \subseteq V_{L+1} \subseteq V$
- $X_L \times Y_L \subseteq X \times Y$ as

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- V_L ⊆ V_{L+1} ⊆ V such that the "approximate self-duality" condition

$$\kappa := \inf_{L \in \mathbb{N}} \left[\inf_{\chi' \in V_L \setminus \{0\}} \sup_{\chi \in V_L \setminus \{0\}} \frac{(\chi', \chi)_H}{\|\chi'\|_{V'} \|\chi\|_V} \right] > 0$$

holds. For example,

- ▶ wavelet Riesz bases for V', H, and V, (Schwab & Stevenson)
- P1 FEM on quasi-uniform meshes, (Babuška & Janik)
- ▶ if the *H*-projection is *V*-stable. (cf. Bramble, Pasciak & Steinbach)

• $X_L \times Y_L \subseteq X \times Y$ as

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- $V_L \subseteq V_{L+1} \subseteq V$ with $\kappa > 0$,

• $X_L \times Y_L \subseteq X \times Y$ as

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- $V_L \subseteq V_{L+1} \subseteq V$ with $\kappa > 0$,
- $X_L \times Y_L \subseteq X \times Y$ as the space-time full tensor product

$$X_L := E_L \otimes V_L, \quad Y_L := V_L \times [F_L \otimes V_L]$$

discrete trial and test spaces, or ...

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- $V_L \subseteq V_{L+1} \subseteq V$ with $\kappa > 0$,
- $X_L \times Y_L \subseteq X \times Y$ as the space-time full tensor product

$$X_L := E_L \otimes V_L, \quad Y_L := V_L \times [F_L \otimes V_L]$$

or the sparse tensor product

$$X_L := \sum_{0 \le k+\ell \le L} E_k \otimes V_\ell, \quad Y_L := V_L \times \sum_{0 \le k+\ell \le L} [F_k \otimes V_\ell]$$

discrete trial and test spaces.

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- $V_L \subseteq V_{L+1} \subseteq V$ with $\kappa > 0$,
- ► $X_L \times Y_L \subseteq X \times Y$ as the **FTP** or the **STP** subspaces.

Take nested sequences of closed nontrivial subspaces ($L \in \mathbb{N}_0$)

- $E_L \subseteq E_{L+1} \subseteq H^1(J)$ and $F_L \subseteq F_{L+1} \subseteq L^2(J)$ with $\tau > 0$,
- $V_L \subseteq V_{L+1} \subseteq V$ with $\kappa > 0$,
- $X_L \times Y_L \subseteq X \times Y$ as the **FTP** or the **STP** subspaces.

Theorem There exists c > 0 such that

 $\inf_{L\in\mathbb{N}}\gamma_L\geq \mathbf{C}\tau\kappa.$

In fact, c = 1 if $a \equiv 1$ and the norm on X is taken as

 $\|w\|_{X}^{2} = \|\partial_{t}w\|_{L^{2}(\mathsf{J};V')}^{2} + \|w\|_{L^{2}(\mathsf{J};V)}^{2} + \|w(\mathsf{T})\|_{H}^{2}.$

On the heat equation: Conditional space-time stability

Take

- $E_L \subset H^1(J)$ pw. polynomial on any temporal mesh \mathcal{T}_L ,
- $V_L \subset V$ any nontrivial finite-dimensional subspace,
- $X_L := E_L \otimes V_L$ and $Y_L := V_L \times [\partial_t E_L \otimes V_L]$ (\equiv cG method).

Theorem There exists c > 0 such that

 $\gamma_L \geq c\kappa \min\{1, \operatorname{CFL}_L^{-1}\}$

where

$$\mathrm{CFL}_L := \max \Delta \mathcal{T} \times \sup_{\chi \in V_L \setminus \{0\}} \frac{\|\chi\|_V}{\|\chi\|_{V'}} \qquad \sim \Delta t \times \frac{1}{\Delta x^2}.$$

The dependence on CFL_L cannot be improved, in general.

 $(L \in \mathbb{N}_0)$

Set-up

- equidistant temporal mesh $T_L = \{k2^{-L} : k = 0, \dots, 2^{L+1}\}$
- L-shaped domain $D \subset \mathbb{R}^2$
- $V_0 \subset H_0^1(D)$ P1 FEM on a simplicial triangulation (pdetool)
- X_L continuous piecewise affine on T_L with values in V_0
- $Y_L := V_0 \times \partial_t X_L$ piecewise constant on \mathcal{T}_L
- source $f(t, x) := \sin(t)$, initial condition g(x) := 0

Corollary.

- The family X_L , Y_{L+1} is space-time stable.
- The family X_L , Y_L (C-N) is conditionally space-time stable.

Figure: Solution to the heat equation on the L-shaped domain (snapshot, almost uniform triangular mesh, 32'705 spatial dof's).

Figure: Number of iterations for the "operator preconditioned LSQR" for Y_L vs. Y_{L+1} as test space (GNE tol. 10⁻⁴). The effect of γ_L is seen.

Consider the semi-linear parabolic PDE

 $\partial_t u(t,x) - \partial_{xx} u(t,x) + 10 u(t,x)^3 = f(t,x), \quad (t,x) \in J \times D,$

in $J \times D = (0, 2) \times (-1, 1)$, with zero I.C. and zero Dirichlet B.C.

The problem is of the form

Bu + G(u) = F

which we solve using the fixed point iteration

 $u_L^i := [w \mapsto T_L B^{-1}(F - G(w))]^i(0), \quad i = 0, 1, \dots$

 $H^1_0(D) \hookrightarrow L^4(D)$

Consider the semi-linear parabolic PDE

 $\partial_t u(t, \mathbf{x}) - \partial_{\mathbf{x}\mathbf{x}} u(t, \mathbf{x}) + 10 u(t, \mathbf{x})^3 = f(t, \mathbf{x}), \quad (t, \mathbf{x}) \in \mathbf{J} \times \mathbf{D},$

We define

• $E_L \subset H^1(J)$ pw. affine on uniform mesh with $\Delta t = 2^{-L}$,

► $V_L \subset H_0^1(D)$ pw. affine on uniform mesh with $\Delta x = 2^{-L}$, and the space-time **full tensor product** trial & test spaces

 $X_L := E_L \otimes V_L, \quad Y_L := V_L \times [E_{L+1} \otimes V_L].$

Consider the semi-linear parabolic PDE

 $\partial_t u(t, \mathbf{x}) - \partial_{\mathbf{x}\mathbf{x}} u(t, \mathbf{x}) + 10 u(t, \mathbf{x})^3 = f(t, \mathbf{x}), \quad (t, \mathbf{x}) \in \mathbf{J} \times \mathbf{D},$

We define

• $E_L \subset H^1(J)$ pw. affine on uniform mesh with $\Delta t = 2^{-L}$,

► $V_L \subset H_0^1(D)$ pw. affine on uniform mesh with $\Delta x = 2^{-L}$, and the space-time **sparse tensor product** trial & test spaces

$$X_L := \sum_{0 \le k+\ell \le L} E_k \otimes V_\ell, \quad Y_L := V_L \times \sum_{0 \le k+\ell \le L} [E_{k+1} \otimes V_\ell].$$

Summary of parameters:

- level of discretization: L = 0, 1, ..., 7
- number of fixed point iterations: i = 0, 1, ..., 8
- full tensor product (**FTP**) solution: u_L^i
- sparse tensor product (**STP**) solution: \hat{u}_L^i
- reference solution: FTP with L = 8 and i = 10

The PDE data:

- $f(t,x) = \sin(\pi t/2)^2 \cos(\cos(\pi t/2) + x)$
- is posed on $J \times D = (0, 2) \times (-1, 1)$
- zero initial value
- homogeneous Dirichlet boundary conditions

Figure: The solution *u* (left) and the source *f* (right)

Note: $\|10u^3\|_{L^{\infty}(J\times D)} \approx \frac{1}{6} \|f\|_{L^{\infty}(J\times D)}$.

Figure: Error of the FTP u_L^i and the STP \hat{u}_L^i solutions for fixed i = 10 as a function of the total number of degrees of freedom, L = 0, ..., 7

Figure: Error of the FTP u_L^i and the STP \hat{u}_L^i solutions for L = 0, ..., 7 as a function of the iteration number *i*

Parabolic multilevel preconditioners

Operator preconditioning: With bases for X_L and Y_L , the sol'n u_L is approximated by iterating on the linear algebraic system

$\mathbf{M}^{-1}\mathbf{B}^{T}\mathbf{N}^{-1}\mathbf{B}\mathbf{u} = \mathbf{M}^{-1}\mathbf{B}^{T}\mathbf{N}^{-1}\mathbf{F},$

where the matrices **N** and **M** measure the *Y* and the *X* norms, possibly only approximately.

Parabolic multilevel preconditioners: variant A

Proposition

An s.p.d. isomorphism $M: X \to X'$ on $X = L^2(J; V) \cap H^1(J; V')$ is defined by

$$\langle Mw,w\rangle := \sum_{k,\ell\in\mathbb{N}} \{2^{0k}2^{2\ell} + 2^{2k}2^{-2\ell}\} \left\| (P_k^{\Delta}\otimes \mathsf{Q}_{\ell}^{\Delta})w \right\|_{L^2(\mathsf{J};H)}^2$$

where P_k^{Δ} and Q_{ℓ}^{Δ} are suitable projections on $L^2(J)$ and H.

Then, \mathbf{M}^{-1} is obtained from M^{-1} .

An s.p.d. isomorphism

$$N: Y \rightarrow Y'$$
 on $H \times Y = L^2(J; V)$

can be defined analogously.

Parabolic multilevel preconditioners: variant A

R.A. and C. Tobler, Multilevel preconditioning and low rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs, (**2012**)

Figure: Space-time MinRes PG coupled with the htucker toolbox: error of the solution computed in the **hierarchical Tucker** low rank format for a space-time problem of full size of up to 127PB Parabolic multilevel preconditioners: variant B

$$\mathbf{M} = \mathbf{M}_t \otimes \mathbf{A}_x + \mathbf{A}_t \otimes (\mathbf{M}_x \mathbf{A}_x^{-1} \mathbf{M}_x)$$

measures the X norm (via $\mathbf{w}^T \mathbf{M} \mathbf{w}$), where $\mathbf{M}_{t,x}$ is the mass and $\mathbf{A}_{t,x}$ is the stiffness matrix, subscript indicating *time* or *space*.

Diagonalize \mathbf{M}_t and \mathbf{A}_t simultaneously by taking \mathbf{V}_t such that

$$\mathbf{V}_t^{\mathsf{T}} \mathbf{M}_t \mathbf{V}_t = \mathbf{I}_t$$
 and $\mathbf{V}_t^{\mathsf{T}} \mathbf{A}_t \mathbf{V}_t = \mathbf{D}_t$

are diagonal. Then

$$\mathbf{M}^{-1} = (\mathbf{V}_t \otimes \mathbf{I}_x)(\mathbf{I}_t \otimes \mathbf{A}_x + \mathbf{D}_t \otimes (\mathbf{M}_x \mathbf{A}_x^{-1} \mathbf{M}_x))^{-1} (\mathbf{V}_t^{\mathsf{T}} \otimes \mathbf{I}_x).$$

Need to solve (many, approx., in parallel) problems of the form

$$(\mathbf{A}_{x}+k^{2}\mathbf{M}_{x}\mathbf{A}_{x}^{-1}\mathbf{M}_{x})\mathbf{w}=\ldots$$

Parabolic multilevel preconditioners: variant B

Summary

- The "natural" X_L and Y_L are not space-time stable.
- Abstract stable MinRes discrete variational formulation.
- Space-time (sparse) discretization of the heat equation.
- Novel parabolic multilevel preconditioners.

References

arXiv, 2012: Space-time discretization of the heat equation. A concise Matlab implementation (and further references).

Thank you!

andreevr@math.ethz.ch

Summary

- The "natural" X_L and Y_L are not space-time stable.
- Abstract stable MinRes discrete variational formulation.
- Space-time (sparse) discretization of the heat equation.
- Novel parabolic multilevel preconditioners.

References

arXiv, 2012: Space-time discretization of the heat equation. A concise Matlab implementation (and further references).

Thank you!

andreevr@math.ethz.ch

this slide is intentionally left blank