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Space-time simultaneous finite element discretizations for

(∂t −∇ · a(t , x)∇)u(t , x) = f (t , x) in J × D,

u(0, x) = g(x) in D,

u(t , x) = 0 on J × ∂D,

and preconditioning of the resulting linear algebraic system.

◮ J = (0,T) temporal interval
◮ D ⊂ R

d bounded domain
◮ a = diffusion coefficient (a ∈ L∞(J × D))

◮ f = source (f ∈ L2(J;H−1(D)))

◮ g = initial value (g ∈ L2(D))
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Space-time simultaneous finite element discretizations for

(∂t −∇ · a(t , x)∇)u(t , x) = f (t , x) in J × D,

u(0, x) = g(x) in D,

u(t , x) = 0 on J × ∂D,

and preconditioning of the resulting linear algebraic system.

◮ various space-time variational formulations are available
◮ quasi-optimality (cf. Céa’s lemma) from space-time stability
◮ massively parallel space-time compressive algorithms
◮ low regularity assumptions on a, f and g, but none on u
◮ high order approximation in time and space possible
◮ space-time error control; towards space-time adaptivity
◮ novel parabolic multilevel preconditioners
◮ application:
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Space-time simultaneous finite element discretizations for

(∂t −∇ · a(t , x)∇)u(t , x) = f (t , x) in J × D,

u(0, x) = g(x) in D,

u(t , x) = 0 on J × ∂D,

and preconditioning of the resulting linear algebraic system.

Example: given u⋆ ∈ L2(J × D) and α > 0, minimize

‖u − u⋆‖2
L2(J×D) + α‖(f ,g)‖2

where u solves the parabolic PDE. The mapping (f ,g) 7→ u
enters the optimality conditions.  “correct” discretization?

3 / 27



−1

−0.5

0

0.5

1

Target state

−1

−0.5

0

0.5

1

Computed state

−8

−6

−4

−2

0

2

Computed control

−0.4

−0.2

0

Difference to target state

3 / 27



Space-time simultaneous finite element discretizations for

(∂t −∇ · a(t , x)∇)u(t , x) = f (t , x) in J × D,

u(0, x) = g(x) in D,

u(t , x) = 0 on J × ∂D,

and preconditioning of the resulting linear algebraic system.

Suppose a = 1, f = 0, and −∆g = λ2g, then

u(t , x) = w(t)g(x), (∂t + λ2)w(t) = 0 on J, w(0) = 1.

This motivates the variational formulation: find w ∈ H1(J) s.t.
ˆ

J
(∂t w + λ2w)v1dt + w(0)v0

!
= 1v0 ∀v1 ∈ L2(J), v0 ∈ R.

This set-up will suffice to exhibit the main difficulty with u 7→ uL.
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For w ∈ H1(J) and v = (v0, v1) ∈ R× L2(J) define Bλ and F by

〈Bλw , v〉 :=
ˆ

J
(∂tw + λ2w)v1dt + w(0)v0 and 〈F , v〉 := 1v0.

The variational formulation thus reads:

Find u ∈ X : 〈Bλu, v〉 = 〈F , v〉 ∀v ∈ Y

where X := H1(J) and Y := R× L2(J).

It is well-posed only if any perturbation Bλ(u + w)− Bλu
can be detected by some test function v :

γ := inf
w 6=0

sup
v 6=0

〈Bλw , v〉
‖w‖‖v‖

> 0.
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For w ∈ H1(J) and v = (v0, v1) ∈ R× L2(J) define Bλ and F by

〈Bλw , v〉 :=
ˆ

J
(∂tw + λ2w)v1dt + w(0)v0 and 〈F , v〉 := 1v0.

First attempt at a discrete variational formulation:

Find uL ∈ XL : 〈BλuL, vL〉 = 〈F , vL〉 ∀vL ∈ YL

where XL ⊂ H1(J) and YL ⊂ R× L2(J) finite-dimensional.

It is well-posed only if any perturbation Bλ(uL + wL)− BλuL

can be detected by some test function vL:

γL := inf
wL 6=0

sup
vL 6=0

〈BλwL, vL〉

‖wL‖‖vL‖
> 0.
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For w ∈ H1(J) and v = (v0, v1) ∈ R× L2(J) define Bλ and F by

〈Bλw , v〉 :=
ˆ

J
(∂tw + λ2w)v1dt + w(0)v0 and 〈F , v〉 := 1v0.

First attempt at a discrete variational formulation:

Find uL ∈ XL : 〈BλuL, vL〉 = 〈F , vL〉 ∀vL ∈ YL

where XL ⊂ H1(J) and YL ⊂ R× L2(J) finite-dimensional.

A family of subspaces XL, YL, parameterized by “level” L,
is called space-time stable if γL ≥ γ > 0 in

γL := inf
wL 6=0

sup
vL 6=0

〈BλwL, vL〉

‖wL‖‖vL‖
> 0.
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Outline of the talk
◮ The “natural” XL and YL are not space-time stable.
◮ Abstract stable MinRes discrete variational formulation.
◮ Space-time (sparse) discretization of the heat equation.
◮ Novel parabolic multilevel preconditioners.
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The “natural” XL and YL are not space-time stable
Take ↓ finite set of nodes

◮ temporal mesh TL = {inf J =: t0 < t1 < . . . < t2L+1 := sup J}
◮ XL ⊂ H1(J) continuous piecewise affine on TL

◮ YL := R× ∂tXL ⊂ R× L2(J) piecewise constant on TL

0 0.2 0.4 0.6 0.8 1
t

w ∈ XL with L = 2

dim XL = 9

0 0.2 0.4 0.6 0.8 1
t

v1 ∈ ∂tXL with L = 2

dim YL = 1 + 8
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The “natural” XL and YL are not space-time stable
Take ↓ finite set of nodes

◮ temporal mesh TL = {inf J =: t0 < t1 < . . . < t2L+1 := sup J}
◮ XL ⊂ H1(J) continuous piecewise affine on TL

◮ YL := R× ∂tXL ⊂ R× L2(J) piecewise constant on TL

This is equivalent to Crank-Nicolson time-stepping, see
◮ B.L. Hulme,

One-step pw. polynomial Galerkin [...], 1972
◮ G. Akrivis, Ch.G. Makridakis, R.H. Nochetto,

Galerkin and Runge-Kutta [...], 2011
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The “natural” XL and YL are not space-time stable
Take ↓ finite set of nodes

◮ temporal mesh TL = {inf J =: t0 < t1 < . . . < t2L+1 := sup J}
◮ XL ⊂ H1(J) continuous piecewise affine on TL

◮ YL := R× ∂tXL ⊂ R× L2(J) piecewise constant on TL

Do we have stability

γL := inf
wL 6=0

sup
vL 6=0

〈BλwL, vL〉

‖wL‖λ‖vL‖λ
≥ γ > 0

uniformly in λ > 0 (and independently of u)?

The norms ‖·‖λ allow to generalize to the parabolic PDE.
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The “natural” XL and YL are not space-time stable
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Worst w

A unit-norm w ∈ XL that realizes the worst case γL ≈ 0.0848

cf. I. Babuška and T. Janik, The h-p [...] for parabolic equations. II., 1990,

also for the discussion of the Crank-Nicolson time-stepping method.
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The “natural” XL and YL are not space-time stable
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Worst w
Best v1 for w

A unit-norm w ∈ XL that realizes the worst case γL ≈ 0.0848
and its best-detecting unit-norm v1 ∈ ∂t XL

May get arbitrarily small for some temporal mesh
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The “natural” XL and YL are not space-time stable
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A unit-norm w ∈ XL that realizes the worst case γL ≈ 0.8671 ≥
√

3/4
and its best-detecting unit-norm v1 ∈ ∂t XL+1

Cannot get much worse for any temporal mesh

7 / 27



The “natural” XL and YL are not space-time stable

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

t

 

 

Worst w
Best v1 for w

A unit-norm w ∈ XL that realizes the worst case γL ≈ 0.9685 ≥
√

15/16
and its best-detecting unit-norm v1 ∈ ∂t XL+2

Cannot get much worse for any temporal mesh
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The “natural” XL and YL are not space-time stable
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How to incorporate the finer test space ↑
in the discrete variational formulation?
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Abstract stable MinRes discrete variational formulation
Let
◮ X and Y be real Hilbert spaces,
◮ B : X → Y ′ be a bounded linear operator,
◮ XL ⊂ X and YL ⊂ Y be finite-dimensional subspaces,
◮ the pair XL, YL satisfy the discrete inf-sup condition γL > 0,

γL := inf
wL 6=0

sup
vL 6=0

〈BwL, vL〉

‖wL‖‖vL‖
> 0.
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Abstract stable MinRes discrete variational formulation
Let
◮ X and Y be real Hilbert spaces,
◮ B : X → Y ′ be a bounded linear operator,
◮ XL ⊂ X and YL ⊂ Y be finite-dimensional subspaces,
◮ the pair XL, YL satisfy the discrete inf-sup condition γL > 0.

Let u ∈ X . Given Bu, the goal is to

find uL ∈ XL such that Bu ≈ BuL.

Remarks
◮ No assumption on B−1.
◮ dim XL < dim YL is ok.
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Abstract stable MinRes discrete variational formulation
Let
◮ X and Y be real Hilbert spaces,
◮ B : X → Y ′ be a bounded linear operator,
◮ XL ⊂ X and YL ⊂ Y be finite-dimensional subspaces,
◮ the pair XL, YL satisfy the discrete inf-sup condition γL > 0.

Thm. For each u ∈ X there exists a unique TLu ∈ XL such that

RL(TLu) ≤ inf
wL∈XL

RL(wL), RL(wL) := sup
vL 6=0

|〈Bu − BwL, vL〉|

‖vL‖
.

The map TL is linear, T 2
L = TL, and ‖TL‖ ≤ γ−1

L ‖B‖. Therefore,

‖u − TLu‖ ≤
‖B‖

γL
inf

wL∈XL

‖u − wL‖ (quasi-optimality)
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Abstract stable MinRes discrete variational formulation
Given XL ⊂ X and YL ⊂ Y with γL > 0, the MinRes solution to

Bu = F ∈ Y ′

is therefore well-defined as the residual minimizer,

uL := arg min
wL∈XL

RL(wL), RL(wL) := sup
vL 6=0

|〈F − BwL, vL〉|

‖vL‖
.

Operator preconditioning: With bases for XL and YL, the sol’n
uL is approximated by iterating on the linear algebraic system

M−1BTN−1Bu = M−1BTN−1F,

where the matrices N and M measure the Y and the X norms.
The condition number is controlled by γ−1

L .
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On the heat equation: a selection of related efforts
◮ I. Babuška and T. Janik, The h-p version [...], 1990
◮ G. Horton and S. Vandewalle, A space-time multigrid method [...], 1995

W. Hackbusch, Parabolic multi-grid methods, 1984
◮ D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for [...]

parabolic equations based on Laplace transformation [...], 2003
◮ M. Griebel and D. Oeltz, A sparse grid space-time [...], 2007
◮ M.J. Gander and S. Vandewalle, Analysis of the parareal [...], 2007
◮ Y. Maday and E.M. Rønquist, Parallelization in time through

tensor-product space-time solvers, 2008
◮ Ch. Schwab and R. Stevenson, Space-time adaptive wavelet methods

for parabolic evolution problems, 2009
◮ N.G. Chegini and R. Stevenson, Adaptive wavelet schemes [...], 2011
◮ L. Banjay and D. Peterseim, Parallel multistep methods [...], 2011
◮ M. Neumüller and O. Steinbach, Refinement of flexible space-time finite

element meshes and discontinuous Galerkin methods, 2011
◮ A. Chernov and Ch. Schwab, Sparse space-time Galerkin BEM for the

nonstationary heat equation, 2012
◮ S.V. Dolgov, B.N. Khoromskij, and I.V. Oseledets, Fast solution of

parabolic problems in the TT/QTT format, 2012
◮ ... 11 / 27



On the heat equation: variational formulation
Define the spaces
◮ X := L2(J;V ) ∩ H1(J;V ′), where V := H1

0 (D),
◮ Y := H × L2(J;V ), where H := L2(D).

Encode the heat eq’n in a space-time variational formulation

Find u ∈ X : 〈Bu, v〉 = 〈F , v〉 ∀v ∈ Y .

with the bounded linear operators B : X → Y ′ and F ∈ Y ′:

〈Bw , v〉 :=
ˆ

J
〈∂tw −∇ · a∇w , v1〉dt + (w(0), v0)L2(D),

〈F , v〉 :=
ˆ

J
〈f , v1〉dt + (g, v0)L2(D).

Studied by Ch. Schwab and R. Stevenson, Space-time adaptive
wavelet methods for parabolic evolution problems, 2009
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On the heat equation: variational formulation
Define the spaces
◮ X := L2(J;V ) ∩ H1(J;V ′), where V := H1

0 (D),
◮ Y := H × L2(J;V ), where H := L2(D).

Encode the heat eq’n in a space-time variational formulation

Find u ∈ X : 〈Bu, v〉 = 〈F , v〉 ∀v ∈ Y .

Default norms on X and Y :

‖w‖2
X := ‖∂t w‖2

L2(J;V ′) + ‖w‖2
L2(J;V ), w ∈ X ,

‖v‖2
Y := ‖v0‖

2
H + ‖v1‖

2
L2(J;V ), v = (v0, v1) ∈ Y .

The norm on V is the H1-seminorm.
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L ∈ N0)
◮ EL ⊆ EL+1 ⊆ H1(J) and FL ⊆ FL+1 ⊆ L2(J) such that the

compatibility condition

τ := inf
L∈N

[
inf

e∈∂t EL+EL\{0}
sup

f∈FL\{0}

(e, f )L2(J)

‖e‖L2(J)‖f‖L2(J)

]
> 0

holds. For example,
◮ EL = FL = {polynomials up to degree L}, (Babuška & Janik)
◮ EL = FL = {sin+ cos up to frequency L}, (Langer & Wolfmayr)
◮ FL = ∂tEL + EL,
◮ EL = {∼ 2L hats on uniform mesh}, FL = EL+1. (R.A.)

◮ VL ⊆ VL+1 ⊆ V
◮ XL × YL ⊆ X × Y as
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L ∈ N0)
◮ EL ⊆ EL+1 ⊆ H1(J) and FL ⊆ FL+1 ⊆ L2(J) with τ > 0,
◮ VL ⊆ VL+1 ⊆ V such that the “approximate self-duality”

condition

κ := inf
L∈N

[
inf

χ′∈VL\{0}
sup

χ∈VL\{0}

(χ′, χ)H

‖χ′‖V ′‖χ‖V

]
> 0

holds. For example,
◮ wavelet Riesz bases for V ′, H, and V , (Schwab & Stevenson)
◮ P1 FEM on quasi-uniform meshes, (Babuška & Janik)
◮ if the H-projection is V -stable. (cf. Bramble, Pasciak & Steinbach)

◮ XL × YL ⊆ X × Y as
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L ∈ N0)
◮ EL ⊆ EL+1 ⊆ H1(J) and FL ⊆ FL+1 ⊆ L2(J) with τ > 0,
◮ VL ⊆ VL+1 ⊆ V with κ > 0,
◮ XL × YL ⊆ X × Y as the space-time full tensor product

XL := EL ⊗ VL, YL := VL × [FL ⊗ VL]

discrete trial and test spaces, or . . .
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L ∈ N0)
◮ EL ⊆ EL+1 ⊆ H1(J) and FL ⊆ FL+1 ⊆ L2(J) with τ > 0,
◮ VL ⊆ VL+1 ⊆ V with κ > 0,
◮ XL × YL ⊆ X × Y as the space-time full tensor product

XL := EL ⊗ VL, YL := VL × [FL ⊗ VL]

or the sparse tensor product

XL :=
∑

0≤k+ℓ≤L

Ek ⊗ Vℓ, YL := VL ×
∑

0≤k+ℓ≤L

[Fk ⊗ Vℓ]

discrete trial and test spaces.
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L ∈ N0)
◮ EL ⊆ EL+1 ⊆ H1(J) and FL ⊆ FL+1 ⊆ L2(J) with τ > 0,
◮ VL ⊆ VL+1 ⊆ V with κ > 0,
◮ XL × YL ⊆ X × Y as the FTP or the STP subspaces.
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L ∈ N0)
◮ EL ⊆ EL+1 ⊆ H1(J) and FL ⊆ FL+1 ⊆ L2(J) with τ > 0,
◮ VL ⊆ VL+1 ⊆ V with κ > 0,
◮ XL × YL ⊆ X × Y as the FTP or the STP subspaces.

Theorem
There exists c > 0 such that

inf
L∈N

γL ≥ cτκ.

In fact, c = 1 if a ≡ 1 and the norm on X is taken as

‖w‖2
X = ‖∂t w‖2

L2(J;V ′) + ‖w‖2
L2(J;V ) + ‖w(T)‖2

H .
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On the heat equation: Conditional space-time stability
Take (L ∈ N0)
◮ EL ⊂ H1(J) pw. polynomial on any temporal mesh TL,
◮ VL ⊂ V any nontrivial finite-dimensional subspace,
◮ XL := EL ⊗ VL and YL := VL × [∂tEL ⊗ VL] (≡ cG method).

Theorem
There exists c > 0 such that

γL ≥ cκmin{1,CFL−1
L }

where

CFLL := max∆T × sup
χ∈VL\{0}

‖χ‖V

‖χ‖V ′

∼ ∆t ×
1

∆x2 .

The dependence on CFLL cannot be improved, in general.
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On the heat equation: Example 1
Set-up
◮ equidistant temporal mesh TL = {k2−L : k = 0, . . . ,2L+1}

◮ L-shaped domain D ⊂ R
2

◮ V0 ⊂ H1
0 (D) P1 FEM on a simplicial triangulation (pdetool)

◮ XL continuous piecewise affine on TL with values in V0

◮ YL := V0 × ∂tXL piecewise constant on TL

◮ source f (t , x) := sin(t), initial condition g(x) := 0

Corollary.
◮ The family XL, YL+1 is space-time stable.
◮ The family XL, YL (C-N) is conditionally space-time stable.
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Figure: Solution to the heat equation on the L-shaped domain
(snapshot, almost uniform triangular mesh, 32′705 spatial dof’s).
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Figure: Number of iterations for the “operator preconditioned LSQR”
for YL vs. YL+1 as test space (GNE tol. 10−4). The effect of γL is seen.
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On the heat equation: Example 2
Consider the semi-linear parabolic PDE

∂tu(t , x) − ∂xx u(t , x) + 10 u(t , x)3 = f (t , x), (t , x) ∈ J × D,

in J × D = (0,2)× (−1,1), with zero I.C. and zero Dirichlet B.C.

The problem is of the form

Bu + G(u) = F

which we solve using the fixed point iteration

u i
L := [w 7→ TLB−1(F − G(w))]i(0), i = 0,1, . . . .

H1
0 (D) →֒ L4(D)
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On the heat equation: Example 2
Consider the semi-linear parabolic PDE

∂tu(t , x) − ∂xx u(t , x) + 10 u(t , x)3 = f (t , x), (t , x) ∈ J × D,

We define
◮ EL ⊂ H1(J) pw. affine on uniform mesh with ∆t = 2−L,
◮ VL ⊂ H1

0 (D) pw. affine on uniform mesh with ∆x = 2−L,

and the space-time full tensor product trial & test spaces

XL := EL ⊗ VL, YL := VL × [EL+1 ⊗ VL].
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Consider the semi-linear parabolic PDE

∂tu(t , x) − ∂xx u(t , x) + 10 u(t , x)3 = f (t , x), (t , x) ∈ J × D,

We define
◮ EL ⊂ H1(J) pw. affine on uniform mesh with ∆t = 2−L,
◮ VL ⊂ H1

0 (D) pw. affine on uniform mesh with ∆x = 2−L,

and the space-time sparse tensor product trial & test spaces

XL :=
∑

0≤k+ℓ≤L

Ek ⊗ Vℓ, YL := VL ×
∑

0≤k+ℓ≤L

[Ek+1 ⊗ Vℓ].
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On the heat equation: Example 2
Summary of parameters:
◮ level of discretization: L = 0,1, . . . ,7
◮ number of fixed point iterations: i = 0,1, . . . ,8
◮ full tensor product (FTP) solution: u i

L

◮ sparse tensor product (STP) solution: û i
L

◮ reference solution: FTP with L = 8 and i = 10

The PDE data:
◮ ∂tu(t , x) − ∂xxu(t , x) + 10 u(t , x)3 = f (t , x)
◮ f (t , x) = sin(πt/2)2 cos(cos(πt/2) + x)
◮ is posed on J × D = (0,2)× (−1,1)
◮ zero initial value
◮ homogeneous Dirichlet boundary conditions
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Figure: The solution u (left) and the source f (right)

Note: ‖10u3‖L∞(J×D) ≈
1
6‖f‖L∞(J×D).

19 / 27



10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

Total number of degrees of freedom

 

 

Rate 1/2
FTP, error in X

Rate 1
STP, error in X

Figure: Error of the FTP ui
L and the STP ûi
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Parabolic multilevel preconditioners
Operator preconditioning: With bases for XL and YL, the sol’n
uL is approximated by iterating on the linear algebraic system

M−1BTN−1Bu = M−1BTN−1F,

where the matrices N and M measure the Y and the X norms,
possibly only approximately.
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Parabolic multilevel preconditioners: variant A

Proposition
An s.p.d. isomorphism M : X → X ′ on X = L2(J;V ) ∩ H1(J;V ′)
is defined by

〈Mw ,w〉 :=
∑

k ,ℓ∈N

{20k22ℓ + 22k2−2ℓ}
∥∥(P∆

k ⊗ Q∆

ℓ )w
∥∥2

L2(J;H)

where P∆

k and Q∆

ℓ are suitable projections on L2(J) and H.

Then, M−1 is obtained from M−1.

An s.p.d. isomorphism

N : Y → Y ′ on H × Y = L2(J;V )

can be defined analogously.
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Parabolic multilevel preconditioners: variant A
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Figure: Space-time MinRes PG coupled with the htucker toolbox:
error of the solution computed in the hierarchical Tucker low rank
format for a space-time problem of full size of up to 127PB

23 / 27



Parabolic multilevel preconditioners: variant B
The matrix

M = Mt ⊗ Ax + At ⊗ (MxA−1
x Mx)

measures the X norm (via wTMw), where Mt,x is the mass and
At,x is the stiffness matrix, subscript indicating time or space.

Diagonalize Mt and At simultaneously by taking Vt such that

VT
t MtVt = It and VT

t AtVt = Dt

are diagonal. Then

M−1 = (Vt ⊗ Ix )(It ⊗ Ax + Dt ⊗ (MxA−1
x Mx))

−1(VT
t ⊗ Ix ).

Need to solve (many, approx., in parallel) problems of the form

(Ax + k2MxA−1
x Mx)w = . . .
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Parabolic multilevel preconditioners: variant B
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Summary
◮ The “natural” XL and YL are not space-time stable.
◮ Abstract stable MinRes discrete variational formulation.
◮ Space-time (sparse) discretization of the heat equation.
◮ Novel parabolic multilevel preconditioners.

References
◮ arXiv, 2012: Space-time discretization of the heat equation.

A concise Matlab implementation (and further references).

Thank you!

andreevr.@.math.ethz.ch
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