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Space-time simultaneous finite element discretizations for

(O — V-a(t,x)V)u(t,x) =f(t,x) in IxD,
u(0,x) =g(x) in D,
u(t,x) =0 on JxdD,

and preconditioning of the resulting linear algebraic system.

v

J = (0,T) temporal interval
D ¢ RY bounded domain
a = diffusion coefficient (ae L= x D))

v

v

» f = source (f € L2(J;H7L(D)))

v

g = initial value (g € L*(D))
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Space-time simultaneous finite element discretizations for

(O — V-a(t,x)V)u(t,x) =f(t,x) in IxD,
u(0,x) =g(x) in D,
u(t,x) =0 on JxdD,

and preconditioning of the resulting linear algebraic system.

» various space-time variational formulations are available

» quasi-optimality (cf. Céa’s lemma) from space-time stability
» massively parallel space-time compressive algorithms

» low regularity assumptions on a, f and g, but none on u

» high order approximation in time and space possible

» space-time error control; towards space-time adaptivity

» novel parabolic multilevel preconditioners

» application:
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Space-time simultaneous finite element discretizations for
(O — V-a(t,x)V)u(t,x) =f(t,x) in IxD,

u(0,x) =g(x) in D,
u(t,x) =0 on JxdD,

and preconditioning of the resulting linear algebraic system.

Example: given u* € L?(J x D) and o > 0, minimize
lu = U1y + all(f,9)II?

where u solves the parabolic PDE. The mapping (f,g) — u
enters the optimality conditions. ~~ “correct” discretization?
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Space-time simultaneous finite element discretizations for

(O — V-a(t,x)V)u(t,x) =f(t,x) in IxD,
u(0,x) =g(x) in D,
u(t,x) =0 on JxdD,

and preconditioning of the resulting linear algebraic system.
Suppose a =1, f =0, and —Ag = \?g, then
u(t,x) =w(t)gx), (& +X)w(t)=0 on J, w(0)=1.

This motivates the variational formulation: find w € H(J) s.t.

/(&W + )\ZW)Vldt + W(O)Vo £ lvg VYvp € LZ(J),VO € R.
J

This set-up will suffice to exhibit the main difficulty with u — u.
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Forw € H1(J) and v = (vp,V;) € R x L?(J) define B, and F by
(Baw, V) = /J(&tw + A2w)vidt +w(0)vo and (F,v) := 1lvg.
The variational formulation thus reads:

Findue X: (Byu,v)=(F,v) YWeY
where X := H(J) and Y := R x L2(J).

It is well-posed only if any perturbation By (u +w) — Byu
can be detected by some test function v:

. Baw,V
~ = inf supM > 0.
w0y 2o [[WI[[v]
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Forw € H1(J) and v = (vp,V;) € R x L?(J) define B, and F by
(Baw, V) = /J(&tw + A2w)vidt +w(0)vo and (F,v) := 1lvg.
First attempt at a discrete variational formulation:

Findu, € X_ ' (Byu,vp) = (F,vp) Yv_ €YL
where X, c H1(J) and Y| C R x L2(J) finite-dimensional.

It is well-posed only if any perturbation B (u. + wyi) — Bu.
can be detected by some test function v, :

. Baw,Vv
L= inf sup M > 0.
w0y 2o [[Wi ||
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Forw € H1(J) and v = (vp,V;) € R x L?(J) define B, and F by
(Baw, V) = /J(&tw + A2w)vidt +w(0)vo and (F,v) := 1lvg.
First attempt at a discrete variational formulation:

Findu, € X_ ' (Byu,vp) = (F,vp) Yv_ €YL
where X, c H1(J) and Y| C R x L2(J) finite-dimensional.

A family of subspaces X, Y|, parameterized by “level” L,
is called space-time stableify. >~ > 0in

. Baw,Vv
A = inf sup Bawpve) g
wi A0y, 2o [IWL[[ [l
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Outline of the talk
» The “natural” X, and Y, are not space-time stable.
» Abstract stable MinRes discrete variational formulation.

» Space-time (sparse) discretization of the heat equation.
» Novel parabolic multilevel preconditioners.
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The “natural” X, and Y are not space-time stable

Take | finite set of nodes
» temporal mesh 7. = {inffd =:tp <ty < ... <ty :=supJd}
» X_ C HY(J) continuous piecewise affine on 7,
» Y =R x gX_ C R x L?(J) piecewise constant on 7,

w e X withL=2 Vi € XL withL =2
/ |
— / 1
/ g/ LT_I__
/ ]
/

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t
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The “natural” X_ and Y are not space-time stable
Take | finite set of nodes
» temporal mesh 7. = {inffd =:tp <ty < ... <ty :=supJd}
» X_ C HY(J) continuous piecewise affine on 7,
» Y =R x g X, C R x L?(J) piecewise constant on 7,

This is equivalent to Crank-Nicolson time-stepping, see

» B.L. Hulme,
One-step pw. polynomial Galerkin [...], 1972

» G. Akrivis, Ch.G. Makridakis, R.H. Nochetto,
Galerkin and Runge-Kutta [...], 2011
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The “natural” X_ and Y are not space-time stable

Take | finite set of nodes
» temporal mesh 7. = {inffd =:tp <ty < ... <ty :=supJd}
» X_ C HY(J) continuous piecewise affine on 7,
» Y =R x gX_ C R x L?(J) piecewise constant on 7,

Do we have stability
. Baw,V
W= inf SUDMZ’Y>O
w70y, o (W[ [IVL ]|

uniformly in A > 0 (and independently of u)?

The norms |-||, allow to generalize to the parabolic PDE.
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The “natural” X_ and Y are not space-time stable

— Worst w

C A
A avaTa
FVVY

0 0.2 0.4 0.6 0.8 1
t

A unit-normw € X, that realizes the worst case ~_ ~ 0.0848

cf. . Babuska and T. Janik, The h-p [...] for parabolic equations. II., 1990,
also for the discussion of the Crank-Nicolson time-stepping method.
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The “natural” X_ and Y are not space-time stable

— Worst w
—— Best v; for w

Cmaad b
AT AL
YNV

RN

0 0.2 0.4 0.6 0.8 1
t

A unit-normw € X, that realizes the worst case ~_ ~ 0.0848
and its best-detecting unit-norm v; € 9: X
May get arbitrarily small for some temporal mesh
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The “natural” X_ and Y are not space-time stable

— Worst w
—— Best v; for w

—

Ay

A A VI

RN AEVEVRVETY
VT

0 0.2 0.4 0.6 0.8 1
t

A unit-normw € X, that realizes the worst case v ~ 0.8671 > /3/4
and its best-detecting unit-normv; € 0 X, 11
Cannot get much worse for any temporal mesh
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The “natural” X_ and Y are not space-time stable

1 AhN
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BEATRTRYRYATAY
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0 0.2 0.4 0.6 0.8 1
t

A unit-normw € X, that realizes the worst case v ~ 0.9685 > /15/16

and its best-detecting unit-norm v; € 0X_ ;>
Cannot get much worse for any temporal mesh
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The “natural” X_ and Y are not space-time stable
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Abstract stable MinRes discrete variational formulation
Let
» X and Y be real Hilbert spaces,
» B : X — Y’ be abounded linear operator,
» X, C X and Y_ C Y be finite-dimensional subspaces,
» the pair X, Y, satisfy the discrete inf-sup condition v_ > 0,

. Bwy,V
= inf sup {Bwi,vi) > 0.
w70y, £0 HWLHHVLH
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Abstract stable MinRes discrete variational formulation

Let
» X and Y be real Hilbert spaces,
» B : X — Y’ be abounded linear operator,
» X, C X and Y_ C Y be finite-dimensional subspaces,
» the pair X, Y, satisfy the discrete inf-sup condition v_ > 0.

Letu € X. Given Bu, the goal is to

find u_ € X, suchthat Bu =~ Bu,.

Remarks
» No assumption on B—1,
» dim X, < dimY_ is ok.
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Abstract stable MinRes discrete variational formulation
Let
» X and Y be real Hilbert spaces,
» B : X — Y’ be abounded linear operator,
» X, C X and Y_ C Y be finite-dimensional subspaces,
» the pair X, Y, satisfy the discrete inf-sup condition v_ > 0.

Thm. For each u € X there exists a unique T u € X, such that

Bu—-B
R (TLu) < inf Ry(wy), Ry(w,):=sup [(Bu — Bw,vi)|
e wro v

The map T is linear, T2 = T_, and ||T|| < fyL_lHBH. Therefore,

Bl

lu—Tuu|| <— inf |ju—w|| (quasi-optimality)
YL WLEXL
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Abstract stable MinRes discrete variational formulation

Given X, € X and Y, C Y with > 0, the MinRes solution to
Bu=F cY'’

is therefore well-defined as the residual minimizer,

. F —Bwp,Vv
u =argminRy(w), Ry(w):=sup u
wEX v #0 H\/L‘

Operator preconditioning: With bases for X_ and Y, the sol'n
uL is approximated by iterating on the linear algebraic system

M~IB'TN"!Bu = M~IBTN7IF,
where the matrices N and M measure the Y and the X norms.

The condition number is controlled by yL‘l.
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On the heat equation: a selection of related efforts

vy

v

I. Babuska and T. Janik, The h-p version [...], 1990
G. Horton and S. Vandewalle, A space-time multigrid method [...], 1995
W. Hackbusch, Parabolic multi-grid methods, 1984

D. Sheen, |.H. Sloan, and V. Thomée, A parallel method for [...]
parabolic equations based on Laplace transformation [...], 2003

M. Griebel and D. Oeltz, A sparse grid space-time [...], 2007
M.J. Gander and S. Vandewalle, Analysis of the parareal [...], 2007

Y. Maday and E.M. Rgnquist, Parallelization in time through
tensor-product space-time solvers, 2008

Ch. Schwab and R. Stevenson, Space-time adaptive wavelet methods
for parabolic evolution problems, 2009

N.G. Chegini and R. Stevenson, Adaptive wavelet schemes [...], 2011
L. Banjay and D. Peterseim, Parallel multistep methods [...], 2011

M. Neumdller and O. Steinbach, Refinement of flexible space-time finite
element meshes and discontinuous Galerkin methods, 2011

A. Chernov and Ch. Schwab, Sparse space-time Galerkin BEM for the
nonstationary heat equation, 2012

S.V. Dolgov, B.N. Khoromskij, and I.V. Oseledets, Fast solution of
parabolic problems in the TT/QTT format, 2012
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On the heat equation: variational formulation

Define the spaces
» X :=L2%(J;V)nHYJ; V'), where V := H}(D),
» Y :=H x L2(J;V), where H := L?(D).
Encode the heat eq’n in a space-time variational formulation

Find ueX: (Bu,v)=(F,v) WegY

with the bounded linear operators B : X — Y and F € Y":
(Bw, V) := /(&w — V-aVw,vy)dt + (w(0), Vo) 2(p)s
J

(F,v):= /J(f,v1>dt + (g,VO)LZ(D).

Studied by Ch. Schwab and R. Stevenson, Space-time adaptive
wavelet methods for parabolic evolution problems, 2009
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On the heat equation: variational formulation

Define the spaces
» X :=L2%(J;V)nHYJ; V'), where V := H}(D),
» Y :=H x L2(J;V), where H := L?(D).
Encode the heat eq’n in a space-time variational formulation

Find ueX: (Bu,v)=(F,v) YWeY.
Default norms on X and Y:

W% = 10w [[Z2 gy + W2 5 weX,

VI = Vol + ValiZ vy V= (Vov1) €Y.

The norm on V is the H!-seminorm.
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On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)

» E, CE41 CHY(J)and F. C Fiy1 C L?(J) such that the
compatibility condition

e,f
o= inf inf (&, F)12)

u ——= 1 >0
LeN |ecaB+E\{0} ter\fo} 1€z lIfllLz(ay

holds. For example,

» E, = F_ = {polynomials up to degree L},  (Babuska & Janik)
E, = F_ = {sin+cos up to frequency L}, (Langer & Wolfmayr)
FL = aEL +EL,

EL = {~ 2! hats on uniform mesh}, F, = E_,;. (RA)

v

v

v
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On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,

13/27



On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,

» Vi C Vi1 €V such that the “approximate self-duality”
condition

/
k= inf inf sup (,X’7X)H >0
LEN | v eVi\{0} yev \foy X/ [Iv/[IxIlv

holds. For example,

» wavelet Riesz bases for V/, H, and V,  (Schwab & Stevenson)
» P1 FEM on quasi-uniform meshes, (Babuska & Janik)
» if the H-projection is V-stable. (cf. Bramble, Pasciak & Steinbach)
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On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,
> VLQVL+1§VWith/€>0,
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On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,
» V| C Vi1 CV with s > 0,
» X x YL C X xY as the space-time full tensor product

XL =EL L@V, Y=V x[FLaV]

discrete trial and test spaces, or ...
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On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,
» V| C Vi1 CV with s > 0,
» X x YL C X xY as the space-time full tensor product

Xe=E @V, Y=V x[FLaV|]
or the sparse tensor product

XL = Z Ek (%) Vg, YL = VL X Z [Fk & Vé]
0<k-+¢<L 0<k+¢<L

discrete trial and test spaces.
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On the heat equation: Space-time stability
Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,
> VLQVL+1§VWith/€>0,
» X x YL CX xY asthe FTP or the STP subspaces.
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On the heat equation: Space-time stability

Take nested sequences of closed nontrivial subspaces (L € Np)
» EL CE41 CHY(J)and FL C Fiyq C L2(J) with 7 > 0,
» V| C Vi1 CV with s > 0,
» X x YL CX xY asthe FTP or the STP subspaces.

Theorem
There exists ¢ > 0 such that

inf v > c7k.
LeEN

Infact, c = 1if a= 1 and the norm on X is taken as

IWIE = 100w 12 5y + W25y + W (T)IIE-
(V) (V)
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On the heat equation: Conditional space-time stability

Take (L € Np)
» E_ C HY(J) pw. polynomial on any temporal mesh 7,
» V. C V any nontrivial finite-dimensional subspace,
» XL :=E @V, and Y, =V x [iEL. ® V|| (= cG method).

Theorem
There exists ¢ > 0 such that

Y > crmin{1,CFL '}

where

CFL_ := maxAT x sup v ~ At x ——.
xevi{oy [Ixllve Ax

The dependence on CFL cannot be improved, in general.
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On the heat equation: Example 1
Set-up
equidistant temporal mesh 7, = {k2t : k =0,...,2-1}
L-shaped domain D C R?
Vo C H}(D) P1 FEM on a simplicial triangulation (pdetool)
X, continuous piecewise affine on 7, with values in Vg
YL := Vp x 9 X, piecewise constant on 7
source f(t,x) := sin(t), initial condition g(x) := 0

v

v

v

v

v

v

Corollary.
» The family X, Y|, is space-time stable.
» The family X, Y, (C-N) is conditionally space-time stable.
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Figure: Solution to the heat equation on the L-shaped domain
(snapshot, almost uniform triangular mesh, 32’705 spatial dof’s).
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Figure: Number of iterations for the “operator preconditioned LSQR”
for Y vs. Y_ .1 as test space (GNE tol. 10~*). The effect of v, is seen.
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On the heat equation: Example 2

Consider the semi-linear parabolic PDE
Au(t,x) — dyu(t,x) + 10u(t,x)® =f(t,x), (t,x) €I x D,
inJx D =(0,2) x (—1,1), with zero I.C. and zero Dirichlet B.C.
The problem is of the form
Bu+G(u)=F
which we solve using the fixed point iteration

ul = [w— T.B"YF —Gw))'(0), i=0,1,....
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On the heat equation: Example 2

Consider the semi-linear parabolic PDE
Au(t,x) — dyu(t,x) + 10u(t,x)® =f(t,x), (t,x) €I x D,

We define
» E. C H(J) pw. affine on uniform mesh with At =271,
» V. C H}(D) pw. affine on uniform mesh with Ax = 27+,
and the space-time full tensor product trial & test spaces

XL = EL ®VL> YL = VL X [EL+1 ®VL]
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On the heat equation: Example 2
Consider the semi-linear parabolic PDE
Au(t,x) — dyu(t,x) + 10u(t,x)® =f(t,x), (t,x) €I x D,

We define

» E. C H(J) pw. affine on uniform mesh with At =271,

» V. C H}(D) pw. affine on uniform mesh with Ax = 27+,
and the space-time sparse tensor product trial & test spaces

X, = Z Ex @Vy, YL :=V_x Z [Ex1 ® V.
0<k+¢<L 0<k+¢<L
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On the heat equation: Example 2

Summary of parameters:
» level of discretization: L=0,1,...,7
» number of fixed point iterations: i =0,1,...,8
» full tensor product (FTP) solution: u‘l_
» sparse tensor product (STP) solution: G‘L
» reference solution: FTP with L =8 and i = 10

The PDE data:
> dwu(t,x) — Au(t,x) +10u(t, x)% = f(t,x)
» f(t,x) = sin(nt/2)? cos(cos(nt/2) + X)
» isposedonJ x D =(0,2) x (—1,1)
» zero initial value
» homogeneous Dirichlet boundary conditions
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Note:

05 1 15 2 0 0.5 1 15 2

t t

Figure: The solution u (left) and the source f (right)

120U3|| e (3xD) = & lIfllLoe(axD)-

0.4

0.3

0.2

0.1
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Figure: Error of the FTP u} and the STP U} solutions for fixed i = 10
as a function of the total number of degrees of freedom, L =0,...,7
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Figure: Error of the FTP u} and the STP U} solutions for L=0,...,7
as a function of the iteration number i

20/27



Parabolic multilevel preconditioners

Operator preconditioning: With bases for X, and Y, the sol'n
u_ is approximated by iterating on the linear algebraic system

M~1B'TN"1Bu = M~ 1B"N"IF,

where the matrices N and M measure the Y and the X norms,
possibly only approximately.
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Parabolic multilevel preconditioners: variant A

Proposition
An s.p.d. isomorphism M : X — X’ on X = L2(J;V) N H(J; V')
is defined by

(Mw,w) = Y~ {2%2% 4 2222} ||(Pe QeA)WHé(J;H)
K.LeN

where P, and Q; are suitable projections on L2(J) and H.

Then, M1 is obtained from M—1.

An s.p.d. isomorphism
N:Y =Y on HxY=L?*JV)
can be defined analogously.
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Parabolic multilevel preconditioners: variant A

10

S 107

5]

g .

g R.A. and C. Tobler, Multilevel

B 1072 preconditioning and low rank

u tensor iteration for space-time
simultaneous discretizations of
parabolic PDEs, (2012)

-3
10 : : :
10" 10° 10°
KB

Figure: Space-time MinRes PG coupled with the ht ucker toolbox:
error of the solution computed in the hierarchical Tucker low rank
format for a space-time problem of full size of up to 127PB
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Parabolic multilevel preconditioners: variant B

The matrix
M =M ® Ax + At @ (MxA M)

measures the X norm (via w'Mw), where Mt x is the mass and
At x Is the stiffness matrix, subscript indicating time or space.

Diagonalize M; and A; simultaneously by taking V; such that
ViMVi =1, and V]AV; =Dy
are diagonal. Then
M = (Vy @ ) (It © Ax + Dt © (MxAg M) (V] @ Iy).
Need to solve (many, approx., in parallel) problems of the form

(Ax + K2M A IM )W = ...
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Parabolic multilevel preconditioners: variant B
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Summary
» The “natural” X, and Y, are not space-time stable.
» Abstract stable MinRes discrete variational formulation.
» Space-time (sparse) discretization of the heat equation.
» Novel parabolic multilevel preconditioners.

References

» arXiv, 2012: Space-time discretization of the heat equation.
A concise Matlab implementation (and further references).
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Summary
» The “natural” X, and Y, are not space-time stable.
» Abstract stable MinRes discrete variational formulation.
» Space-time (sparse) discretization of the heat equation.
» Novel parabolic multilevel preconditioners.

References

» arXiv, 2012: Space-time discretization of the heat equation.
A concise Matlab implementation (and further references).

Thank you!

andreevr@math.ethz.ch
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