
First step towards
Parallel and Adaptive Computation of Maxwell’s Equations

Stefan Findeisen
Supported by the DFG Research Training Group 1294 ”Analysis, Simulation and Design of Nanotechnological Processes“ at the KIT

Institut für Angewandte und Numerische Mathematik

KIT - University of the State of Baden-Württemberg and
National Large-scale Research Center of the Helmholtz Association www.kit.edu

The electro-magnetic Wave Problem

For permeability µ and permittivity ε find an electric field E and a magnetic field H
such that the linear Maxwell system

µ∂tH +∇×E =0, ε∂tE−∇×H =0,
∇·(µH) =0, ∇·(εE) =0

holds for all t ∈ [0,T]. For a given initial condition u0 this can be written as

M∂tu(t) + Au(t) = 0 t ∈ [0,T] , u(0) = u0 ,

where M, A, u are given by

M :=

[
µ 0
0 ε

]
, A :=

[
0 ∇×
−∇× 0

]
, u :=

[
H
E

]
.

2 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

2D reduction of Maxwell’s equations

Consider the 2D reduction

u = (H1,H2,E3) , H3 ≡ E1 ≡ E2 ≡ 0

for Maxwell’s equations in Ω ⊂ R2.

Decomposition for the p-refinement of the space-time domain Q := Ω× (0,T):

Decompose (0,T) such that [0,T] =
⋃N−1

n=0 In, where In is an open interval
In = (tn−1, tn) ⊂ (0,T) for n = 1, . . . ,N

Decompose Ω such that Ω =
⋃

K K , where K is an open element (e.g. triangle)

Let h = max diam(K) be the size of K

Let FK be the set of faces of K

3 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Discontinuous Galerkin Method

There exists symmetric matrices B1,B2 ∈ R3×3 so that the linear flux F is

Au = ∇·F(u) = B1∂x1 u + B2∂x2 u .

Multiplying Au with a test function vK and integrating in K yields

(Au, vK)0,K =

∫
K
∇·F(u) · vK dx

= −
∫

K
F(u) · ∇vK dx +

∑
f∈FK

∫
f
nK ,f · F(u) · vK da .

Choose pk , set VK ,h = PpK (K)3 and define Vh =
{

vh ∈ L2(Ω,R3) : vh
∣∣
K ∈ VK ,h

}
.

Depending on a numerical flux nK · F∗(uh) on f ∈ FK we define Ahuh ∈ Vh by

(Ahuh, vK)0,K = −
∫

K
F(uh) · ∇vK dx +

∑
f∈FK

∫
f
nK ,f · F∗(uh) · vK da

for all uh ∈ Vh and vK ∈ VK ,h and all K .

4 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Discontinuous Galerkin Method

There exists symmetric matrices B1,B2 ∈ R3×3 so that the linear flux F is

Au = ∇·F(u) = B1∂x1 u + B2∂x2 u .

Multiplying Au with a test function vK and integrating in K yields

(Au, vK)0,K =

∫
K
∇·F(u) · vK dx

= −
∫

K
F(u) · ∇vK dx +

∑
f∈FK

∫
f
nK ,f · F(u) · vK da .

Choose pk , set VK ,h = PpK (K)3 and define Vh =
{

vh ∈ L2(Ω,R3) : vh
∣∣
K ∈ VK ,h

}
.

Depending on a numerical flux nK · F∗(uh) on f ∈ FK we define Ahuh ∈ Vh by

(Ahuh, vK)0,K = −
∫

K
F(uh) · ∇vK dx +

∑
f∈FK

∫
f
nK ,f · F∗(uh) · vK da

for all uh ∈ Vh and vK ∈ VK ,h and all K .

5 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

dG Method for Electro-magnetic Waves

For f ∈ FK let Kf be the neighboring tetrahedron with f = ∂K ∩ ∂Kf .
The outer unit normal on f is denoted by nK ,f , and we set [v]K ,f := vKf − vK .

By using the upwind flux, we get the operator(
Ah(Hh,Eh), (φK ,h,ψK ,h)

)
0,K = (∇×EK ,h,φK ,h)0,K − (∇×HK ,h,ψK ,h

)
0,K

+
∑

f∈FK

(cKf εKf

cK εK + cKf εKf

(
nK ,f × [Eh]K ,f ,φK ,h

)
0,f

−
cKf µKf

cKµK + cKf µKf

(
nK ,f × [Hh]K ,f ,ψK ,h

)
0,f

+
1

cKµK + cKf µKf

(
nK ,f × (nK ,f × [Eh]K ,f),ψK ,h

)
0,f

+
1

cK εK + cKf εKf

(
nK ,f × (nK ,f × [Hh]K ,f),φK ,h

)
0,f

)
for (Eh,Hh) ∈ Vh and (ψK ,h,φK ,h) ∈ VK ,h.

(for details see Hesthaven and Warburton 2002)

6 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Time Integration

Consider the semi-discrete problem

Mh∂tuh(t) + Ahuh(t) = 0 for t ∈ [0,T] subject to uh(0) = uh,0.

To solve this problem, we use the implicit midpoint rule

un
h = un−1

h + (tn − tn−1)

(
Mh +

tn − tn−1

2
Ah

)−1

Ahun−1
h for n = 1, . . . ,N

with step size tn − tn−1 and initial condition u0
h = uh,0.

Properties of the implicit midpoint rule:

No CFL (Courant-Friedrichs-Lewy) condition⇒ allows larger time steps tn − tn−1

Convergence order 2 in time

The upwind flux guarantees that (Mh +
tn−tn−1

2 Ah) is positive definite

Costs: solve (Mh +
tn−tn−1

2 Ah)ũn
h = Ahun−1

h in each step

Hence the solution uh is computed sequentially on the slices Sn := Ω× In ⊂ Q.

7 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Time Integration

Consider the semi-discrete problem

Mh∂tuh(t) + Ahuh(t) = 0 for t ∈ [0,T] subject to uh(0) = uh,0.

To solve this problem, we use the implicit midpoint rule

un
h = un−1

h + (tn − tn−1)

(
Mh +

tn − tn−1

2
Ah

)−1

Ahun−1
h for n = 1, . . . ,N

with step size tn − tn−1 and initial condition u0
h = uh,0.

Properties of the implicit midpoint rule:

No CFL (Courant-Friedrichs-Lewy) condition⇒ allows larger time steps tn − tn−1

Convergence order 2 in time

The upwind flux guarantees that (Mh +
tn−tn−1

2 Ah) is positive definite

Costs: solve (Mh +
tn−tn−1

2 Ah)ũn
h = Ahun−1

h in each step

Hence the solution uh is computed sequentially on the slices Sn := Ω× In ⊂ Q.

8 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Space-Time Cells

Define space-time cells

τ = Kτ × Iτ

which consist of a spatial element Kτ and a local time interval Iτ = (tmin
τ , tmax

τ) and
decompose Q into a finite number of open space-time elements τ ⊂ Q such that

Q =
⋃
τ∈T

τ .

⇒ ⇒

Figure: spatial element, space-time element, space-time mesh

9 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Space-time dG approximation
For every τ choose polynomial degrees pτ for the ansatz in space, and define the
local test spaces Hτ,h = Ppτ (Kτ)3 and the test space

Hh =
{

vh ∈ L2(Q)3 : vh|τ ∈ Hτ,h} .

For the ansatz space, we define the affine space depending on the initial condition

Uh =
{

uh ∈ H1(0,T ;L2(Ω)3) : uh(0) = u0 and for all τ ∈ T and (x, t) ∈ τ

uh(x, t) =
tmax
τ − t

tmax
τ − tmin

τ

wτ,h(x, tmin
τ) +

t − tmin
τ

tmax
τ − tmin

τ

vτ,h(x) ,

where wτ,h ∈ Uh|[0,tmin
τ] and vτ,h ∈ Hτ,h

}
Let Ah be the discontinuous Galerkin operator with upwind flux approximating A.

Lemma
Let Lh = Mh∂t + Ah and f ∈ L2(Q)3. The discrete solution uh ∈ Uh of the implicit
midpoint rule is characterized by the variational equation

(Lhuh, vh)Q = (f, vh)Q , vh ∈ Hh .

10 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Space-time dG approximation
For every τ choose polynomial degrees pτ for the ansatz in space, and define the
local test spaces Hτ,h = Ppτ (Kτ)3 and the test space

Hh =
{

vh ∈ L2(Q)3 : vh|τ ∈ Hτ,h} .

For the ansatz space, we define the affine space depending on the initial condition

Uh =
{

uh ∈ H1(0,T ;L2(Ω)3) : uh(0) = u0 and for all τ ∈ T and (x, t) ∈ τ

uh(x, t) =
tmax
τ − t

tmax
τ − tmin

τ

wτ,h(x, tmin
τ) +

t − tmin
τ

tmax
τ − tmin

τ

vτ,h(x) ,

where wτ,h ∈ Uh|[0,tmin
τ] and vτ,h ∈ Hτ,h

}
Let Ah be the discontinuous Galerkin operator with upwind flux approximating A.

Lemma
Let Lh = Mh∂t + Ah and f ∈ L2(Q)3. The discrete solution uh ∈ Uh of the implicit
midpoint rule is characterized by the variational equation

(Lhuh, vh)Q = (f, vh)Q , vh ∈ Hh .

11 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Data Structure

Our implementation is done in C++ and the data structure is organized as follows:
(Time-)cells, faces, edges are identified by their geometric midpoints
Hash maps containers are used for the data
Geometric midpoints are used as hash keys

class Cell : public vector <Point > {...};
class Cells : public hash_map <Point ,Cell*,Hash > {...};

class Interval { class TCell {
const double t_min; const Cell* C;
const double t_max; const Interval* I;
...}; ...};

class TCells : public hash_map <Point ,TCell*,Hash > {
tcell tcells () const { return tcell(begin ());}
tcell tcells_end () const { return tcell(end ()); }
tcell find_cell (const Point& z) const { return tcell(find(z)); }
...};

The use of hash maps allows us to distribute cells among the different processes and
solve the problem in parallel. Every cell is stored on only one master process and
communicates its data to other processes, if needed.
12 Stefan Findeisen - First step towards Parallel and Adaptive Computation

of Maxwell’s Equations
IANM

Data Structure

Our implementation is done in C++ and the data structure is organized as follows:
(Time-)cells, faces, edges are identified by their geometric midpoints
Hash maps containers are used for the data
Geometric midpoints are used as hash keys

class Cell : public vector <Point > {...};
class Cells : public hash_map <Point ,Cell*,Hash > {...};

class Interval { class TCell {
const double t_min; const Cell* C;
const double t_max; const Interval* I;
...}; ...};

class TCells : public hash_map <Point ,TCell*,Hash > {
tcell tcells () const { return tcell(begin ());}
tcell tcells_end () const { return tcell(end ()); }
tcell find_cell (const Point& z) const { return tcell(find(z)); }
...};

The use of hash maps allows us to distribute cells among the different processes and
solve the problem in parallel. Every cell is stored on only one master process and
communicates its data to other processes, if needed.
13 Stefan Findeisen - First step towards Parallel and Adaptive Computation

of Maxwell’s Equations
IANM

Data Structure

Our implementation is done in C++ and the data structure is organized as follows:
(Time-)cells, faces, edges are identified by their geometric midpoints
Hash maps containers are used for the data
Geometric midpoints are used as hash keys

class Cell : public vector <Point > {...};
class Cells : public hash_map <Point ,Cell*,Hash > {...};

class Interval { class TCell {
const double t_min; const Cell* C;
const double t_max; const Interval* I;
...}; ...};

class TCells : public hash_map <Point ,TCell*,Hash > {
tcell tcells () const { return tcell(begin ());}
tcell tcells_end () const { return tcell(end ()); }
tcell find_cell (const Point& z) const { return tcell(find(z)); }
...};

The use of hash maps allows us to distribute cells among the different processes and
solve the problem in parallel. Every cell is stored on only one master process and
communicates its data to other processes, if needed.
14 Stefan Findeisen - First step towards Parallel and Adaptive Computation

of Maxwell’s Equations
IANM

Data Structure

Figure: Distribution of the space-time cells on 32 processes

15 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Heuristic Indicator and p-Refinement

p-adaptive refinement in space:

Compute uh with lowest polynomial degree p = 0 on all slices Sn

Refinement indicator ητ of a cell τ :

η2
τ :=

∑
f∈Fτ

η2
f where η2

f := hf ‖(F∗(uh)− F(uh)) · nf‖2
L2(f) ,

with flux and numerical flux F and F∗, and area hf , and the outer normal vector nf

of the face f .

Increase the polynomial degree p on the space-time cell τ ⊂ Sn, if

ητ > (1− θ) max
τ∈Sn

ητ

holds for ητ and a given parameter θ ∈ [0, 1], e.g. θ = 0.99.

16 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Heuristic Indicator and space-time Refinement

Space-time refinement:

Same heuristic as for p-refinement
If τ = Kτ × Iτ should be refined in time, then

1. Split Iτ = (tmin
τ , tmax

τ) into I1
τ and I2

τ , s.t. Iτ = I1
τ ∪ I2

τ ,
where I1

τ := (tmin
τ , t1/2

τ), I2
τ := (t1/2

τ , tmax
τ) and t1/2

τ := 0.5(tmin
τ + tmax

τ)
2. Replace τ by two new space-time cells τ1 = Kτ × I1

τ and τ2 = Kτ × I2
τ

Perform the implicit midpoint rule twice on time refined space-time cells

Performance of the heuristic approach:

High polynomial degrees and small time steps are used in areas where a single
wavefront is located

Lowest polynomial degrees and larger time steps are used in areas with
absence of a wave

17 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Heuristic Indicator and space-time Refinement

Space-time refinement:

Same heuristic as for p-refinement
If τ = Kτ × Iτ should be refined in time, then

1. Split Iτ = (tmin
τ , tmax

τ) into I1
τ and I2

τ , s.t. Iτ = I1
τ ∪ I2

τ ,
where I1

τ := (tmin
τ , t1/2

τ), I2
τ := (t1/2

τ , tmax
τ) and t1/2

τ := 0.5(tmin
τ + tmax

τ)
2. Replace τ by two new space-time cells τ1 = Kτ × I1

τ and τ2 = Kτ × I2
τ

Perform the implicit midpoint rule twice on time refined space-time cells

Performance of the heuristic approach:

High polynomial degrees and small time steps are used in areas where a single
wavefront is located

Lowest polynomial degrees and larger time steps are used in areas with
absence of a wave

18 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Numerical Experiment

We consider:

Unstructured triangular mesh in a locally tapered domain Ω ⊂ (0, 10)× (−1, 1)
with reflecting boundary conditions

Figure: Unstructured triangular mesh in tapered domain Ω

Constant parameters µ = ε = 1

Initial condition u0(x) =

{
(0, 0, cos(4πx1 − 3π) + 1)T , for 1 ≤ x1 ≤ 1.5,
0, else.

Final time T = 8 with constant initial step size tn − tn−1 = 0.1

19 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Numerical Experiment

t = 0 :

t = 2 :

t = 4 :

t = 6 :

t = 8 :

Figure: Initial distribution of E3 and polynomial degrees and time evolution

20 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Numerical Experiment

Figure: Polynomial degrees and time refinement in the time interval [0, 4]

21 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Numerical Experiment

Figure: Polynomial degrees and time refinement in the time interval [0, 4]

22 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Numerical Experiment

Adaptive polynomial degrees:

p-adaptive uniform
degrees of degrees ofp ‖up+1(T)− up(T)‖V ‖up+1(T)− up(T)‖Vfreedom freedom

0 1,469,664 1,469,6640.835850 0.8537961 3,303,156 4,408,9920.269539 0.2657632 5,424,354 8,817,9840.086987 0.0209593 8,100,078 14,656,6400.022396 0.0029584 11,494,896 22,044,960

Table: Adaptive polynomial degrees and corresponding degrees of freedom

23 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Numerical Experiment

Space-time adaptive (max. one refinement in time):

p-time-adaptive uniform
degrees of degrees ofp ‖up+1(T)− up(T)‖V ‖up+1(T)− up(T)‖Vfreedom freedom

0 1,469,664 2,939,3280.840901 0.8452721 6,051,378 8,817,9840.309939 0.2890862 10,040,952 17,635,9680.083207 0.0230393 13,678,458 29,393,2800.057660 0.0035724 16,445,328 44,089,920

Table: Space-time adaptive refinement and corresponding degrees of freedom

24 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

Outlook

Computation of the full 3D Maxwell problem

Additional refinements in time

h-adaptivity in space

Better error indicators and estimators

25 Stefan Findeisen - First step towards Parallel and Adaptive Computation
of Maxwell’s Equations

IANM

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	anm0:

