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The electro-magnetic Wave Problem A\‘(IT

For permeability ©« and permittivity ¢ find an electric field E and a magnetic field H
such that the linear Maxwell system

1H + V xE =0, ¢0E — V xH =0,
V- (uH) =0, V-(cE) =0

holds for all t € [0, T]. For a given initial condition ug this can be written as

Mowu(t) + Au(t) =0 telo, 1], u(0) = uo,

where M, A, u are given by

wely 9 A= (3 5] w-
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2D reduction of Maxwell’s equations A\‘(IT

Consider the 2D reduction

u=(H{,H:,E3s), Hs=Ei=E>=0
for Maxwell’s equations in Q C R2.

Decomposition for the p-refinement of the space-time domain Q := Q x (0, T):
a Decompose (0, T) such that [0, T] = UQ’Z‘J I», where 1, is an open interval
In=(ta-1,t;) C (0, T)forn=1,...,N
m Decompose Q such that Q = |J, K, where K is an open element (e.g. triangle)
a Let h = maxdiam(K) be the size of K
m Let Fk be the set of faces of K
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Discontinuous Galerkin Method A\‘(IT

There exists symmetric matrices By, B. € R®*3 so that the linear flux F is
Au = V-F(u) = B10x,u + B20x,U.

Multiplying Au with a test function vk and integrating in K yields

(Au,vk)ok = /V-F(u)~v,< dx
K
= _/F(u).Vdex+ Z /nK’f.F(u).dea.
K fe Fk f
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Discontinuous Galerkin Method A\‘(IT

There exists symmetric matrices By, B. € R®*3 so that the linear flux F is
Au = V-F(u) = B19x,u + B20y,u

Multiplying Au with a test function vk and integrating in K yields

(Au,vk)ox = /V-F(u)~v;<dx

/Fu) Vdex+Z/an F(u) - vk da.

fe Fk

Choose px, set Vk » = Pp, (K)* and define V, = {vh € La(Q,R%): vy, € VK,,,}.
Depending on a numerical flux ng - F*(up) on f € Fx we define Apup € V4 by

(Ahuh,vK /F(Uh -Vvkdx + Z /an F Uh dea

fe Fk

forallu, € Vi and vk € Vi pand all K.
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dG Method for Electro-magnetic Waves &‘(IT

Karlsruhe Institute of Technology

For f € Fk let K¢ be the neighboring tetrahedron with f = 0K N 0K;.
The outer unit normal on f is denoted by nk ¢, and we set [V]k ¢ := Vk, — Vk.

By using the upwind flux, we get the operator
(Ah(Hh» En), (¢K,h7 "pK,h))QK = (VxEkp, ¢K,h)0,K — (V xHg p, 1/’K,h)0,K
Ck,e
+ Z (ﬁ(nm X [Eh]K,f7¢K,h)o,f

Cke Ck.€
fery KEK + CK,Ek;

_ CK; HK;
Ck K + CK; LK,
1
_’_7
Ck bk + CK; [LK;

1
———(nk s x (Nks x [H , )
CK5K+CKf6Kf( it X (Micr < [Hal r) ¢K,h)0,,

for (Eh, Hh) € V,and ('¢K,h7 ¢K,h) S VKJ,.

(for details see Hesthaven and Warburton 2002)

(ks X [Halk,fs 'd’K,h)o,f

(nK,f X (Nk,r x [Eh]K,f)JPK,h)OJ
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Time Integration A\‘(IT

Karlsruhe Institute of Technology

Consider the semi-discrete problem
Mpowun(t) + Apun(t) =0 fort € [0, T] subject to uy(0) = upyp.
To solve this problem, we use the implicit midpoint rule

tn - tn—1

up=ul "+ (th— te1) (Mh + >

with step size t, — t,_1 and initial condition u® = uy.
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Time Integration A\‘(IT

Karlsruhe Institute of Technology

Consider the semi-discrete problem
Mpowun(t) + Apun(t) =0 fort € [0, T] subject to uy(0) = upyp.
To solve this problem, we use the implicit midpoint rule

tn - tn—1

—1
5 Ah) Apup~t forn=1,....N

up=ul "+ (th— te1) (Mh +
with step size t, — t,_1 and initial condition u® = uy.

Properties of the implicit midpoint rule:
® No CFL (Courant-Friedrichs-Lewy) condition = allows larger time steps f, — t,_1
a Convergence order 2 in time
Ih—th_1q

® The upwind flux guarantees that (M + ———Ap) is positive definite

w Costs: solve (M, + "=~ A,)u} = Ayu?~" in each step

Hence the solution uj, is computed sequentially on the slices S, :=Q x I, C Q.
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Space-Time Cells A\‘(IT

Karlsruhe Institute of Technology

Define space-time cells
T=K x I

which consist of a spatial element K, and a local time interval /. = (™", ™) and
decompose Q into a finite number of open space-time elements 7 C Q such that

a=J=

P,
T
p = R
Py
Figure: spatial element, space-time element, space-time mesh
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Space-time dG approximation \‘(IT

For every 7 choose polynomial degrees p- for the ansatz in space, and define the
local test spaces H,., = Pp_(K.)® and the test space

Hy = {Vh S L2(O)3: Vh|7— € Hr,h}~
For the ansatz space, we define the affine space depending on the initial condition
Up = {u,, € H'(0, T; La(2)*): un(0) = up and for all = € 7 and (x,t) € 7

tmax _ t min lt_ tmin
Uh(X t) = fmax _ t7r_mn Th(x tr ) max _ t7r_nin Vth(X)’

where W‘,-,h S Uh‘[oy&nm] and V7-’h S nyh}

Let A, be the discontinuous Galerkin operator with upwind flux approximating A.

10  Stefan Findeisen - First step towards Parallel and Adaptive Computation IANM
of Maxwell’s Equations



Space-time dG approximation

For every 7 choose polynomial degrees p- for the ansatz in space, and define the
local test spaces H, » = Pp_(K:)® and the test space

Hh = {Vh S Lz(O)si Vh|-r S Hq—,h}-
For the ansatz space, we define the affine space depending on the initial condition

Up = {u,, € H'(0, T; La(2)*): un(0) = up and for all = € 7 and (x,t) € 7

tmax t
t‘rrnax _ tgpin

min t _ tmin
W, n(x, ") + e i

un(x, t) = V. p(X),
where W; s € Upljp mn @and V-, € HT,h}
Let A, be the discontinuous Galerkin operator with upwind flux approximating A.

Lemma

Let Ly = Myd: + A and f € Lo(Q)3. The discrete solution uy, € Uy of the implicit
midpoint rule is characterized by the variational equation

(Lnun,Vh)a = (f,Vh)a, Vh € Hy.
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Data Structure A\‘(IT

Karlsruhe Institute of Technology

Our implementation is done in C++ and the data structure is organized as follows:
m (Time-)cells, faces, edges are identified by their geometric midpoints
m Hash maps containers are used for the data
m Geometric midpoints are used as hash keys
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Data Structure

SKIT

Karlsruhe Institute of Technology

Our implementation is done in C++ and the data structure is organized as follows:
m (Time-)cells, faces, edges are identified by their geometric midpoints
m Hash maps containers are used for the data
m Geometric midpoints are used as hash keys

class Cell : public vector<Point> {...};
class Cells : public hash_map<Point,Cell*,Hash> {...};

class Interval { class TCell {

const double t_min; const Cellx*x C;

const double t_max; const Intervalx I;
R [

class TCells : public hash_map<Point,TCell*,Hash> {

tcell tcells () comnst { return tcell(begin());}

tcell tcells_end () const { return tcell(end()); %}

tcell find_cell (const Point& z) const { return tcell(find(z));

.}
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Data Structure A\‘(IT

Our implementation is done in C++ and the data structure is organized as follows:
m (Time-)cells, faces, edges are identified by their geometric midpoints
m Hash maps containers are used for the data
m Geometric midpoints are used as hash keys

class Cell : public vector<Point> {...};
class Cells : public hash_map<Point,Cell*,Hash> {...};

class Interval { class TCell {
const double t_min; const Cellx*x C;
const double t_max; const Intervalx I;
R [

class TCells : public hash_map<Point,TCell*,Hash> {

tcell tcells () comnst { return tcell(begin());}

tcell tcells_end () const { return tcell(end()); }

tcell find_cell (const Point& z) comnst { return tcell(find(z)); }
.}

The use of hash maps allows us to distribute cells among the different processes and
solve the problem in parallel. Every cell is stored on only one master process and
communicates its data to other processes, if needed.
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Heuristic Indicator and p-Refinement &‘(IT

Karlsruhe Institute of Technology

p-adaptive refinement in space:
m Compute uj, with lowest polynomial degree p = 0 on all slices S,
a Refinement indicator n, of a cell 7:

n2 =Y n7 wherenf = hy||(F"(un) — F(un)) - nelZ,
feF,

with flux and numerical flux F and F*, and area hy, and the outer normal vector n¢
of the face f.

m Increase the polynomial degree p on the space-time cell = C S, if
n- > (1 —0)maxn,
TESH

holds for n; and a given parameter 6 € [0, 1], e.g. # = 0.99.
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Heuristic Indicator and space-time Refinement g‘(IT

Karlsruhe Institute of Technology

Space-time refinement:
m Same heuristic as for p-refinement
m If 7 = K, x I. should be refined in time, then
1. Split I, = (™", tMax) into /! and 2, s.t. I, = I1 U 2,
where [ == (tmin /2y, 2 .= (¢1/2, tmax) and /2 ;= 0.5(¢Min - fmax)
2. Replace T by two new space-time cells 7' = K. x Il and 72 = K; x 2
a Perform the implicit midpoint rule twice on time refined space-time cells
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Heuristic Indicator and space-time Refinement g‘(IT

Karlsruhe Institute of Technology

Space-time refinement:
m Same heuristic as for p-refinement
m If 7 = K, x I. should be refined in time, then
1. Split I, = (™", tMax) into /! and 2, s.t. I, = I1 U 2,
where [ == (tmin /2y, 2 .= (¢1/2, tmax) and /2 ;= 0.5(¢Min - fmax)
2. Replace T by two new space-time cells 7' = K. x Il and 72 = K; x 2
a Perform the implicit midpoint rule twice on time refined space-time cells

Performance of the heuristic approach:

a High polynomial degrees and small time steps are used in areas where a single
wavefront is located

a Lowest polynomial degrees and larger time steps are used in areas with
absence of a wave
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Numerical Experiment A\‘(IT

Karlsruhe Institute of Technology

We consider:
m Unstructured triangular mesh in a locally tapered domain @ C (0,10) x (—1,1)
with reflecting boundary conditions
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Figure: Unstructured triangular mesh in tapered domain Q

m Constant parameters p=¢ =1

- T <x <A1,
= Initial condition uo(x) éO,O,COS(47rX1 3m)+1)7, z;; <x <15,

m Final time T = 8 with constant initial step size t, — t,—1 = 0.1
IANM
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Numerical Experiment
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t=0:
t=2:
t=4:
t=6:
t=8:
Figure: Initial distribution of Ez and polynomial degrees and time evolution
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Numerical Experiment A\‘(IT
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Figure: Polynomial degrees and time refinement in the time interval [0, 4]
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Numerical Experiment A\‘(IT
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Figure: Polynomial degrees and time refinement in the time interval [0, 4]
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Numerical Experiment

Adaptive polynomial degrees:

AT

p-adaptive uniform

degrees of degrees of
p frgedOm [Up+1(T) = up(T)llv frgedom lp+(T) = up(T)lv
0| 1,469,664 1,469,664
1| 3,303,156 RO 4,408,992 0268763
2 | 5424,354 0.086987 8,817,984 0.020959
3 8,100,078 0.022396 14,656,640 0.002958
4 | 11,494,896 ' 22,044,960 '

Table: Adaptive polynomial degrees and corresponding degrees of freedom
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Numerical Experiment

Space-time adaptive (max. one refinement in time):

p-time-adaptive

AT

uniform

degrees of degrees of
p frgedom [Up1(T) — up(T)llv frgedom [Up1(T) — up(T)Ilv
0| 1,469,664 0.840901 2,939,328 0.845272
1 6,051,378 8,817,984
0.309939 0.289086
2 | 10,040,952 17,635,968
0.083207 0.023039
3 | 13,678,458 0.057660 29,393,280 0.003572
4 | 16,445,328 ’ 44,089,920 ’

Table: Space-time adaptive refinement and corresponding degrees of freedom
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Outlook

Karlsruhe Institute of Technology

Computation of the full 3D Maxwell problem
Additional refinements in time
h-adaptivity in space

Better error indicators and estimators
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