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Construction of Floater–Hormann interpolation for
arbitrary nodes

- Given n + 1 nodes, a = x0 < x1 < . . . < xn = b, and
corresponding function values, f0, . . . , fn,
choose an integer d ∈ {0, 1, . . . , n}, “blending parameter”,

- for i = 0, . . . , n − d , define pi (x), the polynomial of
low degree ≤ d interpolating fi , fi+1, . . . , fi+d .

The d-th interpolant of the family is a “blend” of the pi (x),

rn(x) =

n−d∑
i=0

λi (x)pi (x)

n−d∑
i=0

λi (x)

, with λi (x) =
(−1)i

(x − xi ) . . . (x − xi+d)
.

Notice that for d = n, rn simplifies to pn.
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Linear barycentric rational form

For its evaluation, we write rn in linear barycentric form

rn(x) =

n−d∑
i=0

λi (x)pi (x)

n−d∑
i=0

λi (x)

=

n∑
i=0

wi

x − xi
fi

n∑
i=0

wi

x − xi

.

For equispaced nodes, the weights wi do not depend on f , and
oscillate in sign with absolute values
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1
2 , 1, 1, . . . , 1, 1,

1
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3
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1
4 , d = 2,

1
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4
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7
8 , 1, 1, . . . , 1, 1,

7
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8 ,

1
8 , d = 3.
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Lebesgue function and constant

The Lebesgue constant associated with linear barycentric
interpolation,

Λn,d = max
a≤x≤b

Λn,d(x) = max
a≤x≤b

n∑
i=0

|wi |
|x − xi |

/∣∣∣∣ n∑
i=0

wi

x − xi

∣∣∣∣,
is the condition number of the interpolation scheme.
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Figure: Lebesgue function for Floater–Hormann interpolation with
equispaced nodes in [−1, 1] with d = 2 and d = 5 and n = 40.
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Lebesgue constant

Theorem (Bos–De Marchi–Hormann–K. ’12)

Let 0 ≤ d ≤ n and the nodes xi , i = 0, . . . , n, be equispaced. Then

2d−2

d + 1
log
(n
d
− 1
)
≤ Λn,d ≤ 2d−1(2 + log n).

0 20 40 60 80 100 120 140 160 180 200
0

2

1

3

5

4

6

8

7

d=1

d=2

d=3

0 5 10 15 20 25
10
0

10
2

10
1

10
3

10
5

10
4

10
6

10
8

10
7

n=100

Figure: Logarithmic growth with n (left) and exponential with d
(right).
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Algebraic convergence and polynomial reproduction

Theorem (Floater–Hormann ’07)

Let 1 ≤ d ≤ n and f ∈ Cd+2[a, b], h = max
0≤i≤n−1

(xi+1 − xi ), then

‖f − rn‖∞ ≤ Khd+1,
where K depends only d, b − a and derivatives of f ;

the analytic rational function rn has no real poles;

rn reproduces polynomials of degree ≤ d if n − d is even and
of degree ≤ d + 1 otherwise.
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Interpolation of analytic functions

If f is analytic inside a certain region of the complex plane, then
the interpolation error may be written as

f (x)− rn(x) =
1

2πi

∫
C

f (s)

s − x
·
∑n−d

i=0 λi (s)∑n−d
i=0 λi (x)

ds,

which is a Hermite-type error formula.

Analogy to polynomial interpolation:

f (x)− pn(x) =
1

2πi

∫
C

f (s)

s − x
·
∏n

i=0(x − xi )∏n
i=0(s − xi )

ds.
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Integration of rational interpolants

A linear interpolation formula leads to a linear quadrature rule.
For a barycentric rational interpolant, we have:

I =

∫ b

a
f (x) dx ≈

∫ b

a
rn(x) dx =

∫ b

a

∑n
k=0

wk
x−xk fk∑n

j=0
wj

x−xj
dx

=
n∑

k=0

ωk fk =: Qn,

where

ωk :=

∫ b

a

wk
x−xk∑n
j=0

wj

x−xj
dx .
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Direct rational integration (DRI)

Since the barycentric rational interpolant rn is analytic, we may use
any efficient scheme to approximate an antiderivative of rn:∫ x

a
f (y) dy ≈

∫ x

a
rn(y)dy .

Theorem (Güttel–K. ’13)

Suppose n and d , d ≤ n/2−1, are positive integers, f ∈ Cd+3[a, b]
and the nodes are equispaced. Then for any x ∈ [a, b],∣∣∣∣ ∫ x

a
f (y) dy −

∫ x

a
rn(y) dy

∣∣∣∣ ≤ Khd+2.
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Error behavior with fixed d
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Figure: Errors in the approximation of antiderivatives of 1/(1 + 5x2) from
equispaced data on [−1, 1] with increasing n.

G. Klein Rational integration and RDC 11/24



Introduction
Integration

RDC

Principle
Stability
Examples

Iterated deferred correction

Rational deferred corrections
(RDC)
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Iterated deferred correction principle

We are interested in solving initial-value problems for a function
u : [0,T ]→ CN ,

u′(t) = f (t, u(t)), u(0) = u0 ∈ CN .

Picard reformulation to avoid numerical differentiation:

u(t) = u(0) +

∫ t

0
f (τ, u(τ))dτ.
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Iterated deferred correction principle

Picard formulation:

u(t) = u(0) +

∫ t

0
f (τ, u(τ))dτ,

or equivalently, with e = u − ũ the approximation error,

ũ(t) + e(t) = u(0) +

∫ t

0
f (τ, ũ(τ) + e(τ))dτ,

and the residual

r(t) = u(0) +

∫ t

0
f (τ, ũ(τ))dτ − ũ(t),

we obtain a Picard-type formulation for the error:

e(t) = r(t) +

∫ t

0
f (τ, ũ(τ) + e(τ))− f (τ, ũ(τ))dτ.
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Rational deferred correction (RDC)

Method:

solve u(t) = u(0) +
∫ t
0 f (τ, u(τ))dτ with a low order method

at equally distributed time steps tj → ũ;

compute the residual r(t) = u(0) +
∫ t
0 f (τ, ũ(τ))dτ − ũ(t)

with the rational integration scheme;

use the same low order method for an approximation of the
error e(t) = r(t) +

∫ t
0 f (τ, ũ(τ) + e(τ))− f (τ, ũ(τ))dτ ;

correction: ũnew = ũ + e;

iterate d + 1 times or until desired accuracy is attained.

Possible extension: use Runge–Kutta instead of Euler.
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Implicit-explicit combination

Semilinear initial value problem:

Mu′(t) = Ku(t) + g(t, u(t)), u(0) = u0,

where M,K ∈ RN×N are possibly large matrices, and g nonlinear.
Implicit-explicit Euler combination

Muj+1 = Muj + hjKuj+1 + hjg(tj , uj), hj = tj+1 − tj .

This recursion can be reformulated as

uj+1 = (M − hjK )−1(Muj + hjg(tj , uj)),

which involves the solution of a linear system per time step.
Note: with equally distributed time steps hj = h, only one
matrix inversion is required.
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Stability and accuracy regions

Dahlquist test equation on [0, 1],

u′(t) = λu(t), u(0) = 1.

Let ũ be the solution obtained with the method under
consideration.
Stability region:

{λ ∈ C : |ũ(1)| ≤ 1}.

Accuracy region:

{λ ∈ C : |u(1)− ũ(1)| < ε}.
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Explicit time stepping with n = 21

RDC (d + 1 sweeps) SDC
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Figure: Stability regions (outer) and accuracy regions (inner) with
target accuracy ε = 10−8 with explicit Euler.
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Implicit time stepping with n = 20

zoom full size
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Figure: Stability and accuracy regions for RDC and SDC with implicit
Euler, 8 sweeps, and target accuracy ε = 10−7.
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Brusselator

Brusselator problem for t ∈ [0, 12],

u′1(t) = 1 + u1(t)2u2(t)− 4u1(t), u1(0) = 0,
u′2(t) = 3u1(t)− u1(t)2u2(t), u2(0) = 1.

0 2 4 6 8 10 12

10
−10

10
−5

10
0

Brusselator: RDC (d = 15) with explicit Euler

nr of sweeps

re
la

ti
v
e

 e
rr

o
r

 

 

n = 15

n = 20

n = 40

n = 60

n = 80

eps × Λ
80,15

0 2 4 6 8 10 12

10
−10

10
−5

10
0

Brusselator: SDC with explicit Euler

nr of sweeps

re
la

ti
v
e

 e
rr

o
r

 

 

n = 15
n = 20
n = 40
n = 60
n = 80

G. Klein Rational integration and RDC 20/24



Introduction
Integration

RDC

Principle
Stability
Examples

Van der Pol equation

Van der Pol equation for t ∈ [0, 10],

u′1(t) = u2(t), u1(0) = 2,
u′2(t) = 10(1− u1(t)2)u2(t)− u1(t), u2(0) = 0.
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Burgers’ equation

Burgers’ equation for u(t, x) defined on [0, 0.5]× [−1, 1]

∂tu = 1/(100π) ∂xxu − u ∂xu,

u(t,−1) = u(t, 1) = 0, u(0, x) = − sin(πx).

Implicit-explicit reformulation wrt tj

uj+1 = (I − hjD2)−1(uj +
hj
2
D1u

2
j ).
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Summary

We have seen:

linear barycentric rational interpolation;

integration schemes based on rational interpolation;

RDC.

Future work:

combination with higher order integrators such as
Runge–Kutta;

parallelization, e.g., as in revisionist integral deferred
correction; alternative: parareal.
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Thank you for your attention!
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