RIDC-DD: a Parallel Space–Time Algorithm

Benjamin Ong ¹ Ronald Haynes ²

¹Michigan State University, East Lansing, MI

²Memorial University of New Foundland, Canada

June 18, 2013

Work kindly supported by the AFOSR, BAA 9550-12-1-0455

Outline:

Motivating Examples

Ben Ong

- RIDC (Revisionist Integral Defect Correction)
- RIDC-DD (RIDC with Domain Decomposition)

ongbw@msu.edu

- Scaling Studies
- Future Work

Motivating Example

- A low-order time integrator accumulates error
- E.g. Arenstof 3-body problem (earth, moon, rocket)
 - periodic orbit

Forward Euler integrator, stepsize adaptivity; circles indicate rejected steps

Motivating Example

• Idea: While computing a low-order (inaccurate) solution, simultaneously correct the solution (in parallel)

Motivating Example #2

- Many production software encounter strong scaling limits
- e.g. WRF (Weather Research and Forecasting Model) developed by NCAR

• Strong Scaling Study

PDE of interest:

$$u_t = \mathcal{L}(t, u), \quad (x, t) \in \Omega \times [0, T]$$
$$u(t, x) = g(t, x), \quad x \in \partial \Omega$$
$$u(t, x) = u0(x), \quad x \in \Omega$$

- Serial time integrator, spatially parallel code, scales to N_x processors.
- Idea: Simultaneously solve PDE and error PDEs.
- Parallel space-time algorithm scales to $N_x \times N_t$ processors.

Comparison between RIDC and Parareal

Parareal

- Large-scale parallelism
- Iterative approach
- Sensitive to choice of coarse/fine integrator
- Symplectic variant for Hamiltonian systems

RIDC

- Small-scale parallelism
- Direct approach
- obvious choices for integrators for physical/error PDEs
- natural way to leverage heterogeneous architectures

Error PDE

- Let u be the exact (unknown) solution to $u_t = \mathcal{L}(t, u)$
- Let η be the approximate solution
- Error: $e(t,x) = u(t,x) \eta(t,x)$.
- Residual, $r(t,x) = \eta_t(t,x) \mathcal{L}(t,\eta)$
- Associated error PDE:

$$e_t = u_t - \eta_t$$

= $\mathcal{L}(t, u) - (r + \mathcal{L}(t, \eta))$
= $\mathcal{L}(t, \eta + e) - (r + \mathcal{L}(t, \eta))$

• For stability:

$$\begin{pmatrix} e + \int_0^t r(\tau, x) \, d\tau \end{pmatrix}_t = \mathcal{L}(t, \eta + e) - \mathcal{L}(t, \eta)$$

$$e(0, x) = 0, \quad x \in \Omega, \qquad e(t, x) = 0, \quad x \in \partial \Omega$$

Error PDE

To discretize, define $q(t,x) = e + \int_0^t r(\tau,x) d\tau$.

$$q_t = \mathcal{L}\left(t, \eta + q - \int_0^t r(\tau, x) \, d\tau\right) - \mathcal{L}(t, \eta)$$
$$= f(t, q)$$

s-stage single-step method:

$$\frac{q^{n+1}-q^n}{\Delta t}=\sum_{i=1}^s b_i K_i$$

where

$$K_i = f\left(t^n + c_i\Delta t, q^n + \Delta t\sum_{j=1}^s a_{ij}K_j\right)$$

Concrete Example

 $\mathcal{L}(t, u) = u_{xx}$, first-order Backward Euler. After simplification:

$$\eta^{n+1} + e^{n+1} = \eta^n + e^n + \Delta t(\eta_{xx}^{n+1} + e_{xx}^{n+1}) - \Delta t(\eta_{xx}^{n+1}) + \int_{t^n}^{t^{n+1}} \eta_{xx}(\tau, x) d\tau$$

- idea of correcting an approximation can be bootstrapped (i.e. find a correction to a corrected solution)
- Adopt notation: $\eta^{[p]}$ (approximate solution), $\eta^{[p]} + e^{[p]} = \eta^{[p+1]}$ (corrected solution)

$$\eta^{[p+1],n+1} = \eta^{[p+1],n} + \Delta t \eta_{xx}^{[p+1],n+1} - \Delta t \eta_{xx}^{[p],n+1} + \int_{t^n}^{t^{n+1}} \eta_{xx}^{[p]}(\tau, x) d\tau$$

Backward Euler discretization of original PDE

$$\eta^{[0],n+1} - \Delta t \eta^{[0],n+1}_{xx} = \eta^{[0],n}$$

Backward Euler discretization of error PDEs

$$\eta^{[p+1],n+1} - \Delta t \eta^{[p+1],n+1}_{xx} = \eta^{[p+1],n} - \Delta t \eta^{[p],n+1}_{xx} + \int_{t^n}^{t^{n+1}} \eta^{[p]}_{xx}(\tau,x) \, d\tau$$

- lag necessary (to run in parallel)
- approximate integral sufficiently accurately using quadrature

Memory Footprint / Marching RIDC4

Figure: (i) stencils vary on each level, (ii) white circles are simultaneously computed, (iii) dark circles are stored memory footprint

Theorem

Let u(t), the solution to $u'(t, x) = \mathcal{L}(t, u)$, have sufficient regularity (in time), and suppose that the time domain is discretized into uniformly spaced time intervals. If an $(r_0)^{th}$ order RK method is applied to solve $u'(t) = \mathcal{L}(t, u)$, and $(r_1, r_2, \ldots, r_m)^{th}$ order RK methods are used to solve the corresponding m error PDEs, then the cumulative order (in time) of the RIDC method is $\sum_{i=0}^{m} r_i$. Interestingly:

Theorem

Let u(t), the solution to $u'(t, x) = \mathcal{L}(t, u)$, have sufficient regularity (in time), and suppose that the time domain is discretized into non-uniformly spaced time intervals. If an $(r_0)^{th}$ order RK method is applied to solve $u'(t) = \mathcal{L}(t, u)$, and $(r_1, r_2, ..., r_m)^{th}$ order RK methods are used to solve the corresponding m error PDEs, then the cumulative order (in time) of the RIDC method is at least $(r_0 + m)$.

• This has to do with the "smoothness" of the time discretization

Convergence Study (time)

Comparison with RK Integrators

Figure: n-body simulation, 400 particles

Comparison with RK Integrators

Figure: n-body simulation, 400 particles

Backward Euler discretization of original PDE

$$\begin{split} \eta^{[0],n+1} - \Delta t \eta^{[0],n+1}_{xx} &= \eta^{[0],n} \\ \mathcal{H}[\eta^{[0],n+1}] &= f_0(t,x) \end{split}$$

Backward Euler discretization of error PDEs

$$\eta^{[p+1],n+1} - \Delta t \eta_{xx}^{[p+1],n+1} = \eta^{[p+1],n} - \Delta t \eta_{xx}^{[p],n+1} + \int_{t^n}^{t^{n+1}} \eta_{xx}^{[p]}(\tau,x) \, d\tau$$
$$\mathcal{H}[\eta^{[p],n+1}] = f_p(t,x)$$

• f_p are known, assuming appropriate lag,

•
$$\mathcal{H} = (1 - \Delta t \, \partial_{xx})$$

Suffices to consider

$$(1 - \alpha \Delta)u = f, \quad x \in [0, 1]$$

 $u(0) = 0, \quad u(1) = 0$

Domain Decomposition:

- split domain into several sub-domains.
- solve coupled system (via transmission conditions) of PDEs

Spatial Parallelism

$$(1 - \alpha \Delta)u = f, \quad x \in [0, 1]$$

 $u(0) = 0, \quad u(1) = 0$

Optimized transmission condition

Suffices to consider

$$(1 - \alpha \Delta)u = f, \quad x \in [0, 1]$$

 $u(0) = 0, \quad u(1) = 0$

Schwarz Iteration

For $k = 1, 2, \ldots$, solve

$$x \in \Omega_{0}$$

$$(1 - \alpha \Delta)(u_{0}^{k}) = f,$$

$$u_{0}^{k}(0) = 0$$

$$\frac{\partial u_{0}^{k}}{\partial x}\Big|_{\alpha} + \gamma u_{0}^{k}(\alpha) =$$

$$\frac{\partial u_{1}^{k-1}}{\partial x}\Big|_{\alpha} + \gamma u_{1}^{k-1}(\alpha)$$

$$x \in \Omega_{1}$$

$$(1 - \alpha \Delta)(u_{1}^{k}) = f$$

$$\frac{\partial u_{1}^{k}}{\partial x} \Big|_{\alpha} - \gamma u_{1}^{k}(\alpha) =$$

$$\frac{\partial u_{0}^{k-1}}{\partial x} \Big|_{\alpha} - \gamma u_{0}^{k-1}(\alpha)$$

$$u_{1}^{k}(1) = 0$$
Founded

- (E

Dirichlet Transmission Condition

- overlap required
- rate of convergence increases as overlap increases

$$\begin{array}{c|c} & \Omega_0 & d & d \\ \hline & & & & \\ 0 & \alpha & & 1 \end{array}$$

For
$$k = 1, 2, \ldots$$
, solve

$$\begin{aligned} x \in \Omega_0 & x \in \Omega_0 \\ (1 - \alpha \Delta)(u_0^k) = f, & (1 - \alpha \Delta)(u_1^k) = f, \\ u_0^k(0) = 0 & u_1^k(1) = 0 \\ u_0^k(\alpha + d) = u_1^{k-1}(\alpha + d) & u_1^k(\alpha - d) = u_0^{k-1}(\alpha - d) \end{aligned}$$

Schwarz Convergence

- linear heat equation in \mathbb{R}^1
- sixteen subdomains

Parallel Space Time Study

Linear heat equation in \mathbb{R}^2

- 10×10 non-overlapping domains
- Optimized transmission conditions
- Eighth order RIDC method
- Transmission coefficients found recursively.

Implementation:

- Nodes: 2-socket, 8-core Sandy Bridge processors, FDR IB
- each socket handles one subdomain
 - communicates with other sockets via MPI (for dd)
 - communicates via OpenMP threads within socket (for RIDC)
- time scaling: vary number of threads on each socket

Hybrid MPI–OpenMP Implementation

- RIDC design: minimize memory footprint
- startup complicated before marching in a pipe
- parallel efficiency = # RIDC steps / N_t
- where # RIDC steps = startup steps + march-in-pipe

- RIDC design: minimize memory footprint
- startup complicated before marching in a pipe
- parallel efficiency = # RIDC steps / N_t
- \bullet where # RIDC steps = startup steps + march-in-pipe

prediction (1) (2) (3) (4)
$$\cdots$$
 (N)
 t_0 t_1 t_2 t_3 t_4 \cdots t_{N_t}
Figure: RIDC1

Efficiency

- RIDC design: minimize memory footprint
- startup complicated before marching in a pipe
- parallel efficiency = # RIDC steps / N_t
- where # RIDC steps = startup steps + march-in-pipe

3rd correction (node 3) (8) $\overline{7}$ 9 610 (0) (6) 2nd correction (node 2) (5)(9)(0)(4)(10). . . 1st correction (node 1) (2)(3)(6)(0)(5)9 prediction (node 0) 2 3 (5) $\left(6 \right)$ (9)(0)(10). . . t_0 t_1 t_2 t_3 t_4 . . .

Figure: RIDC4

Theoretical Efficiency

- Assume no overhead communication cost
- N_t time steps total
- $p \cdot N_t$ processors available for RIDCp

scheme	efficiency
RIDC1	$\frac{N}{N}$
RIDC2	$\frac{N}{N+1}$
RIDC3	$\frac{N}{N+3}$
RIDC4	$\frac{N}{N+6}$
RIDC5	$\frac{N}{N+10}$

Theoretical Efficiency

- Assume no overhead communication cost
- N_t time steps total
- $p \cdot N_t$ processors available for RIDCp

scheme	efficiency		
RIDC1	$\frac{N}{N}$		
RIDC2	$\frac{N}{N+1}$		
RIDC3	$\frac{N}{N+3}$		
RIDC4	$\frac{N}{N+6}$		
RIDC5	$\frac{N}{N+10}$		

Theoretical Efficiency:

$N_x imes N_y imes N_t$	# cores	walltime	speedup	efficiency
10 imes 10 imes 1	100	12 minutes	1.0 imes	1.0
$10\times10\times2$	200	6 minutes	2.0 imes	0.9795
$10\times10\times4$	400	3.2 minutes	3.7 imes	0.9299
$10\times10\times8$	800	1.8 minutes	6.5 imes	0.8143

Future Work / Collaborators

Future Work:

- Publishing software
- Fault-Tolerant RIDC-DD
- Multi-Level RIDC-DD
- contributing RIDC to a community software (e.g. WRF, a regional weather forecasting model)

Collaborators:

- DD: Ronald Haynes (Memorial University of Newfoundland)
- RIDC: Colin Macdonald (Oxford), Ray Spiteri (U. Sask)
- Software: Kyle Ladd (MSU)
- Fault Tolerance: Andrew Christlieb (MSU), Scott High (MSU)
- WRF: Yang Zhang + team (NC State)