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Motivation: Turbulent flow simulations 
often require millions of timesteps 
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Jet Engine Combustor 

Launch abort 
system 

Maneuvering F18 

Landing gear noise 

Rotorcraft wake 

Multiscale chaotic dynamical system 
 
Time step size constrained by fastest 
timescale, time integration length 
multiple of slowest timescale 

Many applications require 
computing long time 
averaged quantities. 



From top500.org 

Motivation 2: Next generation parallel 
computers calls for space-time parallelism 
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10 years 
1000 times 

In 10 years, you will think 
about a 100,000 core 
simulation approximately the 
way you think about a 100 core 
simulation today 

Total GFLOPS, top500 

Fastest supercomputer 

500th supercomputer 



Bottleneck of LES turnaround time 

• Good scaling is difficult below 5000 gridpoint per core. 
• Next generation, massively parallel HPC on the horizon. 
• Paralle-in-time is necessary for applications requiring 

fast turnaround time. 

640,000 mesh pts 

2,160,000 mesh pts 

# processors 
Speed up 

Moin 2002 
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A Critical barrier to efficient time parallelism 
• Turbulent flows can be chaotic – sensitive to perturbations. 
• Small error in the coarse solver at earlier timesteps can 

cause large error in the estimate at later timesteps 
• Causing slow convergence of time parallel solvers. 
• Flow across circular cylinder at Re=500: 

Difference between two flow fields, in 
spanwise velocity 

t=2 

t=62 
t=22 
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A Critical barrier to efficient time parallelism 
• Turbulent flows can be chaotic – sensitive to perturbations. 
• Small error in the coarse solver at earlier timesteps can 

cause large error in the estimate at later timesteps 
• Causing slow convergence of time parallel solvers. 
• Iterations required by 

Parareal is proportional 
to the length of time 
integration for chaos. 

Time steps 

Residual 

First 12 iterations 

Reynolds-Barredoa et al. Mechanisms for the 
convergence of time-parallelized, parareal turbulent 
plasma simulations. J. Comp. Phys. 231-23, 2012 
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Why slower convergence at later timesteps? 
Rate of heat transfer 

Ti
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Coarse solver 
(Lorenz FE) 

Fine solver 
(Lorenz RK4) 

Example: 
Lorenz system 

Initial value problems of 
chaotis are ill-posed. 



For a large class of chaotic systems, ‹J› is 
independent of the initial condition (ergodic). 

Target quantity of interest: time averaged 
quantity 
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where 



Reformule turbulent flow simulation 
for efficient time parallelism 

• Ergodic assumption: time averaged quantities of 
interest are independent of the initial condition. 

• Replace the traditional initial value problem 
 

     with one without the initial condition. 
• Aim for solution of the flow equation near a reference 

solution (coarse solver, a nearby parameter value). 
• Chaotic systems with initial condition is ill-conditioned; 

without initial condition it can be well-conditioned. 
9 



New approach: replace the initial condition 
with least squares 

 
 
 
 
 

• “Integral phase condition” for finding homoclinic 
cycles in dynamical systems 

• Does using least squares instead of an initial 
condition remove the ill-conditioning of chaos? 

Initial value problem of chaos is ILL-conditioned 
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Reference solution 
Time dilation 
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Least squares problem 
Condition number O(T2) 

Initial value problem 
Condition number O(eλT) 
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Time dependent output Time dependent output 

Coarse solver 
(Lorenz FE) 

Fine solver 
(Lorenz RK4) 11 

Coarse solver 
(Lorenz FE) 

Fine solver 
(Lorenz RK4) 
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Phase space cartoon of a perturbed 
initial value problem 
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Phase space cartoon of a perturbed 
least squares problem 

A nearby trajectory exists by 
the shadowing lemma [cite]. 
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Shadowing Lemma for Hyperbolic Chaos 
For any δ>0 there exists ε>0, such that for every 
“ε-pseudo-solution” u satisfying ǁdu/dτ−f(u)ǁ<ε, 
there exists a true solution u satisfying 
du/dt−f(u)=0 under a time transformation t(τ), 
such that 

ǁu(τ)−u(t)ǁ<δ, |1−dt/dτ|<δ 



Space-time Parallel nonlinear Solver  
Iterative Least Squares Algorithm 

1. Start at step k=0 with a reference solution 
2. Evaluate residual 
3. Compute the Least Squares Solution of the 

Linearized Equation with space-time-parallel solver 
 
 

4. Newton step 
5. Go to Step 2 if convergence not achieved. 
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Validation on 
the Lorenz System 

Ra=25 Ra=35 
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Initial condition c=-1 
Converged solution c=-0.1 

The Kuramoto-Sivashinsky equation 
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What does it takes to do Least Squares? 
• Solve L2 regularized problem wo. initial condition 
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What does it takes to do Least Squares? 
• Solve L2 regularized problem wo. initial condition 

 
 

• Optimality (KKT) condition 
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Substitute: a second order in time system 



A second order in time, SPD system 

Discrete version: 

 
 
 

 where 
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Phase space cartoon of a perturbed 
least squares problem 



What does it takes to do Least Squares? 
• Solve L2 regularized problem wo. initial condition 

 
 

• Gauss elimination of KKT system leads to 

 
 
 

• S.P.D. but globally coupled system 
• It takes efficient iterative solution method for size 

ndof x nstep sparse system 
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Multigrid is the method of choice for 
Least Squares Sensitivity 
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Time multigrid for Lorenz attractor 
Solid dots: Dt = 0.001, Open dots: Dt = 0.008 



Multigrid for Least Squares Sensitivity: 
Lessons learned 
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•      is a function of time. 
– Iterations on very coarse grids (larger Dt) useless. 
– Anti-aliasing in u(t) when coarsening is critical. 

• Krylov iterations works better than fixed point 
smoother – why? 

• Performance is sensitive to order of space and 
time coarsening. 



Parallel space-time multigrid enables least squares 
computation for isotropic homogeneous turbulence 

26 

Taylor micro-scale Reynolds number = 33 



A Potential Paradigm Shift in Simulating Chaos 
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Initial Value Formulation Least Squares Formulation 

Ill-conditioned Well-conditioned 

Suitable for time advancing 
Storing only a few time steps 

Time advancing does not work 
Store all time steps at once  



A Potential Paradigm Shift in Simulating Chaos 

28 

Initial Value Formulation Least Squares Formulation 

Ill-conditioned Well-conditioned 

Suitable for time advancing 
Storing only a few time steps 

Time advancing does not work 
Store all time steps at once  

Sequential in nature, do not 
parallelize well in time 

Breaks causality, scalable 
parallelization in time 



A Potential Paradigm Shift in Simulating Chaos 
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Initial Value Formulation Least Squares Formulation 

Ill-conditioned Well-conditioned 

Suitable for time advancing 
Storing only a few time steps 

Time advancing does not work 
Store all time steps at once  

Sequential in nature, do not 
parallelize well in time 

Breaks causality, scalable 
parallelization in time 

Suitable when computer size to 
problem size ratio is small 
Current computing paradigm 

Suitable when computer size to 
problem size ratio is large 
Potential “Exascale” computing 
paradigm 



Towards computational engineering 
of chaotic systems 
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• Solution of initial value problems of chaos is ill-
conditioned and unsuitable for many 
computational engineering purposes. 

• Our new formulation removes the initial 
condition, uses least squares instead 
– Stable trajectories for perturbed parameters 
– Computes correct, useful sensitivity 

• Current work on scalability 
– Will enable design, control, characterization and UQ 

for an important class of aerospace applications on 
which current methods fail 
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Towards Scalable Long Time Integration 
of Chaotic Systems 

• Many applications require rapid simulation turnaround 
time that is not achievable by spatial-only parallelism 
even on next generation computers. 

• Scalable parallel time integration can be achieved by 
replacing the initial condition and with a Least Squares 
problem. 
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