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ATMOSPHERIC PROCESSES

Model: Euler equations for inviscid compressible flow

Atmospheric models contain slow modes (advection)

and fast modes (gravity and sound wave)

CFL number for sound waves is very restrictive

Pure advection allows larger stepsizes

CFLADVECTION/CFLSOUND ≤ 1/10

Strategies: filtering, semi-implicit, split-explicit/multirate

Large timesteps for slow processes

small timesteps for fast processes

Starting point: Linear acoustics (U
<
≈ cS/10)

ut + Uux =− csπx

πt + Uπx =− csux
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CLASSIC RUNGE-KUTTA METHODS

Runge-Kutta method for integration of y′ = f(y) uses internal stages

Yni =yn + h
∑

j

aijf(Ynj)

yn+1 =Yn,s+1 (final update=additional stage)

Stage is interpreted as the exact solution of y′ = c :=
∑

j aijf(Ynj)

Start at yn : Zni(0) =yn

Solve ODE : Z′

ni(τ) =
∑

j

aijf(Ynj)

Integrate over[0, h] : Yni =Zni(h).
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PARTITIONED METHODS

y′ =f(y) + g(y)

In each RK-stage we solve an ODE with fixed f -evaluations

Start at yn : Zni(0) =yn

Solve ODE : Z′

ni(τ) =
∑

j

aijf(Ynj)+cig(Zni(τ))

Integrate over[0, h] : Yni =Zni(h).

NOTE: For g = 0 we obtain an RK-method!

Split-explicit RK3-method (Wicker/Skamarock 01) uses finite number of

steps of forward-backward Euler:

A =





0 0 0 0

1/3 0 0 0

0 1/2 0 0

0 0 1 0




, nodes c = (0, 1/3, 1/2, 1)T
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GENERALISED PARTITIONED METHODS

We generalise the exact integration procedure in two directions:

arbitrary starting points based on preceeding stages

Zni(0) =yn+
∑

j

αij(Ynj − yn)

increments in the constant term based on preceeding stages

Z′

ni(τ) =
1

h

∑

j

γij(Ynj − yn)+
∑

j

βijf(Ynj) + dig(Zni(τ))

Multirate Infinitesimal Step approach (MIS):
Use exact integration to analyse order and stability.

Computation: apply finite number of small steps of a simpler method.

Small step size is determined such that accuracy/stability is preserved.
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MIS-RK METHODS

The complete method is given by

Zni(0) =yn +
∑

j

αij(Ynj − yn)

∂

∂τ
Zni(τ) =

1

h

∑

j

γij(Ynj − yn) +
∑

j

βijf(Ynj) + dig(Zni(τ))

Yni =Zni(h)

yn+1 =Yn,s+1.

g = 0 ⇒ underlying RK method

Y =1l ⊗ yn + ((α+ γ)⊗ I)(Y − 1l ⊗ yn) + h(β ⊗ I)f(Y )

Y =1l ⊗ yn + h((I −α− γ)−1
β ⊗ I)f(Y )

⇒ A =(I −α− γ)−1
β =: Rβ
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ORDER CONDITIONS for MIS-RK

Business as usual ⇒ Taylor expansion.

Things become complicated: Zni(τ, h) is a function of τ and h!

G(Yni)
(k) := ∂k

∂hk

∣∣∣
h=0

G(Yni), G(Zni)
(k,l) := ∂k+l

∂τk∂hl

∣∣∣
τ=h=0

G(Zni)

Recursion for derivatives of Yni:

Yni =Zni(h, h) ⇒ Y
(k)
ni =

k∑

l=0

(
k

l

)
Z
(l,k−l)
ni .

3 recursions for derivatives of Zni:

Z
(0,l)
ni =

∑

j

αijY
(l)
nj

Z
(1,l)
ni =

1

l + 1

∑

j

γijY
(l+1)
nj +

∑

j

βijf(Ynj)
(l) + dig(Zni)

(0,l)

⇒ Z
(k,l)
ni =dig(Zni)

(k−1,l), k ≥ 2.
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ORDER CONDITIONS FOR ORDER 3

4 classic conditions

bT 1l =1, bT c = 1/2, bT c2 = 1/3, bTAc = 1/6

5 additional conditions

b̃(c+ c̃) =1

b̃(I +α)Ac =1/3

3b̃(α+ γ/2)RD(c+ c̃) + b̃TD(c+ 2c̃) =1

bTRD(c+ c̃) =1/3

b̃T (c2 + c̃2 + c · c̃) =1

with c̃ := αc, R := (I −α− γ)−1 and b̃ = eTs+1RD.
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STABILITY: LINEAR ACOUSTICS

Linear acoustics equation (linearised isentropic Euler equations)

ut + Uux =− csπx

πt + Uπx =− csux

U = constant background velocity, cs = speed of sound, π = Exner
pressure

spatial discretisation on staggered grid (C-grid):
Advection →
upwind

Sound waves →
symmetric

u′i(t) ={−
U

6∆x
[2ui+1 + 3ui − 6ui−1 + ui−2]}+ {−

cs
∆x

[πi − πi−1]}

π′

i(t) ={−
U

6∆x
[2πi+1 + 3πi − 6πi−1 + πi−2]}+ {−

cs
∆x

[ui+1 − ui]}
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STABILITY ANALYSIS

Amplification depends on Courant-numbers CA = U∆t/∆x,

CS = cs∆t/∆x and wave numbers k (waves eikx)

(
u

π

)n+1

= S(CA, CS , k)

(
u

π

)n

Stability: scan amplification matrix S(CA, Cs, k) over all wave numbers k

R(CA, CS) := max
k

̺(S(CA, CS , k)) ≤ 1.

Numerical computation: Replace exact integration of Z′

ni = c+ g(Zni) by

small time steps.

NOTE: Even then CS is computed with respect to the large time step!
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STABILITY REGIONS

RK3, exact integration.
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MIS3B, exact integration.
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OPTIMIZED METHODS

Design criteria:

Computational cost: Total length of fast process integration intervals

D =
∑

i di.

Accuracy: Classical order 3 (4 conditions)

Accuracy: Order 2 for partitioned systems

Stability: We assume CA/CS ≤ µ = 1/6.

Stability: The size CS,max of the stability triangle

(CA, CS) ∈ T [(0, 0), (0, CS,max), (µCS,max, CS,max)]

Stability: The maximum tracer CFL number CA,max.

The fast integration procedure is Störmer-Verlet.
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APPROACH I: GENETIC OPTIMIZATION

Objective function: combines good stability properties with small integration
interval D

ϕ̂ := max(0, 30− CS,max), ϕ :=

{
ϕ̂ if ϕ̂ > 0

−1/
∑

di if ϕ̂ = 0

Genetic optimization ⇒ order 2, good stability

Deterministic optimization steps allow to construct 3rd order methods

The small step integration procedure (Störmer-Verlet) is used to analyse
stability

The number of small steps is determined from CS,max

A 3-stage method is constructed, classsical order 3

A 4-stage method is constructed, full order 3
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APPROACH II: TVD BASED METHODS

We fix the underlying RK method to be 3rd order TVD.

0

1 1

1/2 1/4 1/4

1/6 1/6 2/3

0

2/3 2/3

2/3 2/9 4/9

1/4 3/16 9/16

Gottlieb/Shu Knoth/W.

TVD radius=1 TVD radius=3/4

Method 1 has c2 = 1 ⇒ d2 = 1 ⇒ D is large.

Use method 2 as underlying method
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OPTIMIZATION

Constraint: Stable on the boundary of the stability triangle.

Objective functions:

1. φ = −CS,max where CS,max is a parameter.

2. φ = D where CS,max is fixed.

3. φ = −CS,max/D where CS,max is a parameter.

Cycle between (1) and (2) as preprocessing, use (3) for final optimization.

Result: Methods with D = 1.1.
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STABILITY PROPERTIES

genetic, s = 3 genetic, s = 4

TVD A TVD B
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EULER EQUATIONS (2D)

Conservation form with entropy as thermodynamic quantity

∂Q

∂t
+

∂F (Q)

∂x
+

∂G(Q)

∂z
= S

Q =





ρ

ρu

ρw

ρθ




, F (Q) =





uρ

ρu2 + p

uρw

uρθ




, G(Q) =





wρ

wρu

ρw2 + p

wρθ




.

S denotes the gravity source terms.

diagnostic equation: Pressure p = p(ρθ) = p0

(
Rρθ
p0

)γ

Red terms are ”sound” terms, spatial discretization ⇒

y′ =B(y, y) = C(y)y + f(y) + g(y)
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FINITE VOLUMES IN SPACE

Staggered grid (Arakawa C-grid)

ρ,ρθ −> φ

ρu

ρ

From Cell to Face: upwind

w

shift ρu, ρw → ρuL/R, ρwU/D: 6 cell-centered quantities ρφij

Advection: interpolate φ = ρφ/ρ to faces by 3rd order upwind,

update in flux form (cheap fast terms ρu, ρw at interface)

∂

∂t
(ρφ)ij =−

1

∆x
[(ρu)i+1/2,jφi+1/2,j − (ρu)i−1/2,jφi−1/2,j ]

−
1

∆z
[(ρw)i,j+1/2φi,j+1/2 − (ρw)i,j−1/2φi,j−1/2]

Inertia ρui+1/2,j on faces: average advection over ρuL,i,j , ρuR,i+1,j

pressure gradient (p(ρθi+1,j)− p(ρθi,j))/∆x is fast term

same for ρw, where gravitational force −gρ is fast term
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BUBBLE BENCHMARK

Euler equations, rising bubble with advection

Domain 20km× 10km, Grid dx = dy = 125 m;

Final time = 17 minutes

Initial state: u = 20m/s, v = 0, hydrostatic balance, θ = 300K.

Thermal bubble with ∆θ = +2K, radius 2km

Boundary conditions: periodic/no-flux

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

Maximum step sizes

Method RK3 MIS2 MIS4 TVDA

Macro Time Step in s 0.9 5.0 4.0 4.1
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SUMMARY

MIS approach to analyse and develop time integration schemes for the
invisvid compressible Euler equations

Optimization with included small step integration procedure

Two approaches: Genetic + TVD

Optimized methods improve the stability bound by a factor of 4− 5.

Excellent stability/accuracy for nonlinear Euler equations

Open question: Can we have methods with D = 1, D < 1?
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