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OVERVIEW

B Atmospheric processes

M Multirate Infinitesimal Step approach
M Order conditions for MIS-RK methods
M Stability analysis for linear acoustics

B Optimized methods
W Genetic optimization
W TVD based methods

M Tests on the Euler equations
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ATMOSPHERIC PROCESSES

B Model: Euler equations for inviscid compressible flow

B Atmospheric models contain slow modes (advection)
and fast modes (gravity and sound wave)

B CFL number for sound waves is very restrictive
M Pure advection allows larger stepsizes

CFLapvEcTion/CFLsounp < 1/10

W Strategies: filtering, semi-implicit, split-explicit/multirate
W Large timesteps for slow processes
W small timesteps for fast processes

M Starting point: Linear acoustics (U N cg/10)

ut + Uug = — csmy

¢ + Uy = — csug
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CLASSIC RUNGE-KUTTA METHODS

B Runge-Kutta method for integration of 3/ = f(y) uses internal stages

Yni =yn + hz aij f(Ynj)
J

Bindedl = oadl (final update=additional stage)

W Stage is interpreted as the exact solution of ¢’ = ¢ := 37 a;; f(Yn )

Start at y,, : Zni(0) =yn

Solve ODE : Zi(T) = Z aijf(Ynj)

J
Integrate over|0, ] : Y =Zni(h).
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PARTITIONED METHODS

y =f(y) +9(y)

M In each RK-stage we solve an ODE with fixed f-evaluations

Start at vy, : Zni(0) =yn
Solve ODE : Zni(1) = _ i f (Ynj)+cig(Zni(T))
J
Integrate over|0, h] : Yni =Zni(h).

NOTE: For ¢ = 0 we obtain an RK-method!

MW Split-explicit RK3-method (Wicker/Skamarock 01) uses finite number of
steps of forward-backward Euler:

(0 000\

A= 0
0 1/2 0 0
1

,nodes ¢ = (0,1/3,1/2,1)%
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GENERALISED PARTITIONED METHODS

B We generalise the exact integration procedure in two directions:
W arbitrary starting points based on preceeding stages

0) =yn+ » aij(Yn; — yn)
J

™ increments in the constant term based on preceeding stages

_%Z%j(yﬂj +Zﬁw Yij) + dig(Zni(7))
j

B Multirate Infinitesimal Step approach (MIS):
Use exact integration to analyse order and stability.
Computation: apply finite number of small steps of a simpler method.
Small step size is determined such that accuracy/stability is preserved.
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MIS-RK METHODS

M The complete method is given by

0) =yn + Zaij(ynj — Yn)
or ni hZ’YU nj —

Yn+1 :Yn,s—l—l .

n

+Zﬁz;, Yg) + dig(Zni(7))

M ¢ = 0 = underlying RK method
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Y =10 yn + (a +v) ) (Y
BRI f(Y)

Y =1 yn + h((I —a —~)
—~ A=(I—a—~)"'8= RS

—1®yn) +h(BRI)f(Y)
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ORDER CONDITIONS for MIS-RK

Business as usual = Taylor expansion.
Things become complicated: Zni (T, h) is a function of = and h!

k kJd) . 9T ,
G( )( ). = he0 G(Ynz), G(an)( ) T OTRORT e h—0) G(an)

8hk

M Recursion for derivatives of Y;,;:

k
Yni =Zpi(h,h) = Y, =" <IZ> ZLk=D,

[=0

M 3 recursions for derivatives of Z,,;:

Zo(»g’l) Z O‘@JY(Z)

PO y (I+1) )& (0,0)
'nz l—i—lz ] ng +25’LJ ’nJ + d; ( nz)

J

k,l
= 2% —gi9(Z, )Y k> 2
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ORDER CONDITIONS FOR ORDER 3

M 4 classic conditions

b 1=1,b"c=1/2,b"* =1/3,b" Ac =1/6

M 5 additional conditions

~

b(c+¢) =1
b(I + a)Ac =1/3
3b(a +v/2)RD(c + &) + b’ D(c + 2¢) =1

b' RD(c + ¢) =1/3

Z;T(CQ + & +c-¢) =1

withé:=ac, R:==I —a—~)"tand b= eg+1RD.
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STABILITY: LINEAR ACOUSTICS

M Linear acoustics equation (linearised isentropic Euler equations)

ut + Uug = — csmy

e + Unge = — csug

U = constant background velocity, ¢ = speed of sound, = = Exner
pressure

M spatial discretisation on staggered grid (C-grid):
® Advection —

upwind Ti—1 T3 it 1
: > : ¢ : 34
™ Sound waves — ;1 u; —
symmetric
( ) {_ [2uz—|—1 + 3u; — 6u;—1 + ui— 2] — TG — 1]}
/ U
mi(t) ={— 6AL 2741 + 3m; — 6m—1 + mi—2]} + {_ [uH—l w;il}
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STABILITY ANALYSIS

B Amplification depends on Courant-numbers C 4 = UAt/Ax,
Cg = csAt/Az and wave numbers k (waves e'*?)

n—+1 n
(“) — 5(Ca, Cs, k) (“)

B Stability: scan amplification matrix S(C 4, Cs, k) over all wave numbers k

R(Cp,Cg) := mISLXQ(S(C'A,C'S,k)) < 1.

@ Numerical computation: Replace exact integration of Z. = c + g(Z,,;) by
small time steps.
NOTE: Even then Cg is computed with respect to the large time step!
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STABILITY REGIONS

RKS, exact integration.
2
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MIS3B, exact integration.
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RKS3, forward-backward Euler (ns = [2, 3, 6]).
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MIS3Ba, forward-backward Euler
(ns = [2,3,4]).

1.5f

advection

CFL

0.57

cfl

sound

—pn. 12/21



OPTIMIZED METHODS

Design criteria:
B Computational cost: Total length of fast process integration intervals
D=7Y".d,.
M Accuracy: Classical order 3 (4 conditions)
M Accuracy: Order 2 for partitioned systems
M Stability: We assume C4 /Cg < = 1/6.
W Stability: The size Cg ,,4, Of the stability triangle

(CAa CS) € T[(Oa 0)7 (Oa CS,max)a (MCS,ma:m CS,ma:U)]

B Stability: The maximum tracer CFL number C'4 ax-

M The fast integration procedure is Stérmer-Verlet.
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APPROACH I: GENETIC OPTIMIZATION

Objective function: combines good stability properties with small integration
interval D

AN

7 if o >0

p := max(0,30 — C : =
e ( Smaz);  ® {_1/Zdi 5= 0

Genetic optimization = order 2, good stability

B Deterministic optimization steps allow to construct 3rd order methods

M The small step integration procedure (Stormer-Verlet) is used to analyse
stability

B The number of small steps is determined from Cg 1,44
M A 3-stage method is constructed, classsical order 3
M A 4-stage method is constructed, full order 3
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APPROACH II: TVD BASED METHODS

M We fix the underlying RK method to be 3rd order TVD.

0 0

1 1 2/3 | 2/3

12 | 1/4 1/4 2/3 | 219 4/9
1/6 1/6 2/3 1/4 3/16 9/16
Gottlieb/Shu Knoth/W.

TVD radius=1

TVD radius=3/4

M Method 1 hasco =1 = do =1 = D is large.

M Use method 2 as underlying method
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OPTIMIZATION

B Constraint: Stable on the boundary of the stability triangle.

M Objective functions:
1. ¢ = —Cgs maz Where Cg 4, 1S @ parameter.

2. ¢ = D where Cg 4. is fixed.

3. ¢ = —Cg maz/D Where Cg 4, IS @ parameter.
M Cycle between (1) and (2) as preprocessing, use (3) for final optimization.
B Result: Methods with D = 1.1.
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STABILITY PROPERTIES

genetic, s = 3 genetic, s = 4

TECHNISCHE TVD A TVD B
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EULER EQUATIONS (2D)

M Conservation form with entropy as thermodynamic quantity

p0

0Q | OF(Q) , 9G(@Q)

ot o 0.
-
pu® + p
, F(Q)= , G(Q)=
upw
| upt

wp

wpU
pw® + p

wpl

M S denotes the gravity source terms.

. , | .
W diagnostic equation: Pressure p = p(pf) = po (Rpe)

M Red terms are "sound” terms, spatial discretization =

TECHNISCHE
UNIVERSITAT
DRESDEN

Po

y' =B(y,vy) = C(y)y + f(y) + 9(v)
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FINITE VOLUMES IN SPACE

MW Staggered grid (Arakawa C-grid)

= o P,Pe —> @
0 o PW —> <0
Bt < PU /4

From Céll to Face: upwind
W shift pu, pw — pur, /g, pwy,p: 6 cell-centered quantities pg;

B Advection: interpolate ¢ = p¢/p to faces by 3rd order upwind,
update in flux form (cheap fast terms pu, pw at interface)

9 1
a(qu)ij = — A—x[(PU)¢+1/2,j¢z‘+1/2,j = (Pu)i-1/2,j%i-1/2,5]

1
— g PWigr1y2@i 12 — (00)i 17295 j-1/2]

W Inertia pu; 4o ; ON faces: average advection over pur, ; ;, pugr,it1,;
pressure gradient (p(p0it1,5) — p(p0i,5))/ Az is fast term
same for pw, where gravitational force —¢p is fast term
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BUBBLE BENCHMARK

M Euler equations, rising bubble with advection

W Domain 20km x 10km, Grid dx = dy = 125 m;

™ Final time = 17 minutes

W Initial state: © = 20m/s,v = 0, hydrostatic balance, § = 300K.

™ Thermal bubble with A§ = +2K, radius 2km
™ Boundary conditions: periodic/no-flux

80

70F

80

70F

B Maximum step sizes
Method RK3 | MIS2 | MIS4 | TVDA
Macro Time Stepins | 0.9 5.0 4.0 4.1
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SUMMARY

B MIS approach to analyse and develop time integration schemes for the
invisvid compressible Euler equations

B Optimization with included small step integration procedure

M Two approaches: Genetic + TVD

B Optimized methods improve the stability bound by a factor of 4 — 5.
M Excellent stability/accuracy for nonlinear Euler equations

M Open question: Can we have methods with D =1, D < 17
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