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Introduction
In this Section we consider two important features of complex functions. The Cauchy-Riemann
equations provide a necessary and sufficient condition for a function f(z) to be analytic in some
region of the complex plane; this allows us to find f ′(z) in that region by the rules of the previous
Section.

A mapping between the z-plane and the w-plane is said to be conformal if the angle between two
intersecting curves in the z-plane is equal to the angle between their mappings in the w-plane. Such
a mapping has widespread uses in solving problems in fluid flow and electromagnetics, for example,
where the given problem geometry is somewhat complicated.
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�
Prerequisites

Before starting this Section you should . . .

• understand the idea of a complex function
and its derivative

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use the Cauchy-Riemann equations to obtain
the derivative of complex functions

• appreciate the idea of a conformal mapping
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1. The Cauchy-Riemann equations
Remembering that z = x + iy and w = u + iv, we note that there is a very useful test to determine
whether a function w = f(z) is analytic at a point. This is provided by the Cauchy-Riemann
equations. These state that w = f(z) is differentiable at a point z = z0 if, and only if,

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
at that point.

When these equations hold then it can be shown that the complex derivative may be determined by

using either
df

dz
=

∂f

∂x
or

df

dz
= −i

∂f

∂y
.

(The use of ‘if, and only if,’ means that if the equations are valid, then the function is differentiable
and vice versa.)

If we consider f(z) = z2 = x2 − y2 + 2ixy then u = x2 − y2 and v = 2xy so that

∂u

∂x
= 2x,

∂u

∂y
= −2y,

∂v

∂x
= 2y,

∂v

∂y
= 2x.

It should be clear that, for this example, the Cauchy-Riemann equations are always satisfied; therefore,
the function is analytic everywhere. We find that

df

dz
=

∂f

∂x
= 2x + 2iy = 2z or, equivalently,

df

dz
= −i

∂f

∂y
= −i(−2y + 2ix) = 2z

This is the result we would expect to get by simply differentiating f(z) as if it was a real function.
For analytic functions this will always be the case i.e. for an analytic function f ′(z) can be
found using the rules for differentiating real functions.

Example 3
Show that the function f(z) = z3 is analytic everwhere and hence obtain its
derivative.

Solution

w = f(z) = (x + iy)3 = x3 − 3xy2 + (3x2y − y3)i

Hence

u = x3 − 3xy2 and v = 3x2y − y3.

Then

∂u

∂x
= 3x2 − 3y2,

∂u

∂y
= −6xy,

∂v

∂x
= 6xy,

∂v

∂y
= 3x2 − 3y2.

The Cauchy-Riemann equations are identically true and f(z) is analytic everywhere.

Furthermore
df

dz
=

∂f

∂x
= 3x2 − 3y2 + (6xy)i = 3(x + iy)2 = 3z2 as we would expect.

We can easily find functions which are not analytic anywhere and others which are only analytic in
a restricted region of the complex plane. Consider again the function f(z) = z̄ = x− iy.
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Here

u = x so that
∂u

∂x
= 1, and

∂u

∂y
= 0; v = −y so that

∂v

∂x
= 0,

∂v

∂y
= −1.

The Cauchy-Riemann equations are never satisfied so that z̄ is not differentiable anywhere and so is
not analytic anywhere.

By contrast if we consider the function f(z) =
1

z
we find that

u =
x

x2 + y2
; v =

y

x2 + y2
.

As can readily be shown, the Cauchy-Riemann equations are satisfied everywhere except for x2+y2 =

0, i.e. x = y = 0 (or, equivalently, z = 0.) At all other points f ′(z) = − 1

z2
. This function is analytic

everywhere except at the single point z = 0.

Analyticity is a very powerful property of a function of a complex variable. Such functions tend to
behave like functions of a real variable.

Example 4
Show that if f(z) = zz̄ then f ′(z) exists only at z = 0.

Solution

f(z) = x2 + y2 so that u = x2 + y2, v = 0.
∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂v

∂x
= 0,

∂v

∂y
= 0.

Hence the Cauchy-Riemann equations are satisfied only where x = 0 and y = 0, i.e. where z = 0.
Therefore this function is not analytic anywhere.

Analytic functions and harmonic functions
Using the Cauchy-Riemann equations in a region of the z-plane where f(z) is analytic, gives

∂2u

∂x∂y
=

∂

∂x

(
∂u

∂y

)
=

∂

∂x

(
− ∂v

∂x

)
= −∂2v

∂x2

and

∂2u

∂y∂x
=

∂

∂y

(
∂u

∂x

)
=

∂

∂y

(
∂v

∂y

)
=

∂2v

∂y2
.

If these differentiations are possible then
∂2u

∂x∂y
=

∂2u

∂y∂x
so that

∂2u

∂x2
+

∂2u

∂y2
= 0 (Laplace’s equation)

In a similar way we find that

∂2v

∂x2
+

∂2v

∂y2
= 0 (Can you show this?)
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When f(z) is analytic the functions u and v are called conjugate harmonic functions.

Suppose u = u(x, y) = xy then it is easy to verify that u satisfies Laplace’s equation (try this). We
now try to find the conjugate harmonic function v = v(x, y).

First, using the Cauchy-Riemann equations:

∂v

∂y
=

∂u

∂x
= y and

∂v

∂x
= −∂u

∂y
= −x.

Integrating the first equation gives v =
1

2
y2+ a function of x. Integrating the second equation

gives v = −1

2
x2+ a function of y. Bearing in mind that an additive constant leaves no trace after

differentiation, we pool the information above to obtain

v =
1

2
(y2 − x2) + C where C is a constant

Note that f(z) = u + iv = xy +
1

2
(y2 − x2)i + D where D is a constant (replacing C i).

We can write f(z) = −1

2
iz2 + D (as you can verify). This function is analytic everywhere.

Task

Given the function u = x2 − x− y2

(a) Show that u is harmonic, (b) Find the conjugate harmonic function, v.

Your solution

(a)

Answer

∂u

∂x
= 2x− 1,

∂2u

∂x2
= 2,

∂u

∂y
= −2y,

∂2u

∂y2
= −2.

Hence
∂2u

∂x2
+

∂2u

∂y2
= 0 and u is harmonic.

Your solution

(b)
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Answer

Integrating
∂v

∂y
= 2x− 1 gives v = 2xy − y+ function of x.

Integrating
∂v

∂x
= +2y gives v = 2xy+ function of y.

Ignoring the duplication, v = 2xy − y + C, where C is a constant.

Task

Find f(z) in terms of z, where f(z) = u + iv, where u and v are those found in
the previous Task.

Your solution

Answer
f(z) = u + iv = x2 − x− y2 + 2xyi− iy + D, D constant.

Now z2 = x2 − y2 + 2ixy and z = x + iy thus f(z) = z2 − z + D.

Exercises

1. Find the singular point of the rational function f(z) =
z

z − 2i
. Find f ′(z) at other points and

evaluate f ′(−i).

2. Show that the function f(z) = z2 + z is analytic everywhere and hence obtain its derivative.

3. Show that the function u = x2 − y2 − 2y is harmonic, find the conjugate harmonic function v
and hence find f(z) = u + iv in terms of z.

Answers

1. f(z) is singular at z = 2i. Elsewhere

f ′(z) =
(z − 2i).1− z.1

(z − 2i)2
=

−2i

(z − 2i)2
f ′(−i) =

−2i

(−3i)2
=
−2i

−9
=

2

9
i

2. u = x2 + x− y2 and v = 2xy + y

∂u

∂x
= 2x + 1,

∂u

∂y
= −2y,

∂v

∂x
= 2y,

∂v

∂y
= 2x + 1

Here the Cauchy-Riemann equations are identically true and f(z) is analytic everywhere.

df

dz
=

∂f

∂x
= 2x + 1 + 2yi = 2z + 1
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Answer

3.
∂2u

∂x2
= 2,

∂2u

∂y2
= −2 therefore u is harmonic.

∂v

∂y
=

∂u

∂x
= 2x therefore v = 2xy+ function of y

∂v

∂x
= −∂u

∂y
= 2y + 2 therefore v = 2xy + 2x+ function of x

∴ v = 2xy + 2x + constant

f(z) = x2 + 2ixy − y2 + 2xi− 2y = z2 + 2iz

2. Conformal mapping
In Section 26.1 we saw that the real and imaginary parts of an analytic function each satisfies
Laplace’s equation. We shall show now that the curves

u(x, y) = constant and v(x, y) = constant

intersect each other at right angles (i.e. are orthogonal). To see this we note that along the curve
u(x, y) = constant we have du = 0. Hence

du =
∂u

∂x
dx +

∂u

∂y
dy = 0.

Thus, on these curves the gradient at a general point is given by

dy

dx
= −

∂u

∂x
∂u

∂y

.

Similarly along the curve v(x, y) = constant, we have

dy

dx
= −

∂v

∂x
∂v

∂y

.

The product of these gradients is

(
∂u

∂x
)(

∂v

∂x
)

(
∂u

∂y
)(

∂v

∂y
)

= −
(
∂u

∂x
)(

∂u

∂y
)

(
∂u

∂y
)(

∂u

∂x
)

= −1

where we have made use of the Cauchy-Riemann equations. We deduce that the curves are orthog-
onal.
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As an example of the practical application of this work consider two-dimensional electrostatics. If
u = constant gives the equipotential curves then the curves v = constant are the electric lines of
force. Figure 2 shows some curves from each set in the case of oppositely-charged particles near to
each other; the dashed curves are the lines of force and the solid curves are the equipotentials.

Figure 2

In ideal fluid flow the curves v = constant are the streamlines of the flow.

In these situations the function w = u + iv is the complex potential of the field.

Function as mapping
A function w = f(z) can be regarded as a mapping, which maps a point in the z-plane to a point
in the w-plane. Curves in the z-plane will be mapped into curves in the w-plane.

Consider aerodynamics where we are interested in the fluid flow in a complicated geometry (say flow
past an aerofoil). We first find the flow in a simple geometry that can be mapped to the aerofoil
shape (the complex plane with a circular hole works here). Most of the calculations necessary to find
physical characteristics such as lift and drag on the aerofoil can be performed in the simple geometry
- the resulting integrals being much easier to evaluate than in the complicated geometry.

Consider the mapping

w = z2.

The point z = 2 + i maps to w = (2 + i)2 = 3 + 4i. The point z = 2 + i lies on the intersection of
the two lines x = 2 and y = 1. To what curves do these map? To answer this question we note that
a point on the line y = 1 can be written as z = x + i. Then

w = (x + i)2 = x2 − 1 + 2xi

As usual, let w = u + iv, then

u = x2 − 1 and v = 2x

Eliminating x we obtain:

4u = 4x2 − 4 = v2 − 4 so v2 = 4 + 4u is the curve to which y = 1 maps.
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Example 5
Onto what curve does the line x = 2 map?

Solution

A point on the line is z = 2 + yi. Then

w = (2 + yi)2 = 4− y2 + 4yi

Hence u = 4− y2 and v = 4y so that, eliminating y we obtain

16u = 64− v2 or v2 = 64− 16u

In Figure 3(a) we sketch the lines x = 2 and y = 1 and in Figure 3(b) we sketch the curves into
which they map. Note these curves intersect at the point (3, 4).

y

x

y = 1

x = 2

(2, 1)

(3, 4)

v2 = 4 + 4u

v2 = 64 − 16u

u

v

(a) (b)

Figure 3

The angle between the original lines in (a) is clearly 900; what is the angle between the curves in (b)
at the point of intersection?

The curve v2 = 4 + 4u has a gradient
dv

du
. Differentiating the equation implicitly we obtain

2v
dv

du
= 4 or

dv

du
=

2

v

At the point (3, 4)
dv

du
=

1

2
.
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Task

Find
dv

du
for the curve v2 = 64− 16u and evaluate it at the point (3, 4).

Your solution

Answer

2v
dv

du
= −16 ∴

dv

du
= −8

v
. At v = 4 we obtain

dv

du
= −2.

Note that the product of the gradients at (3, 4) is −1 and therefore the angle between the curves at
their point of intersection is also 900. Since the angle between the lines and the angle between the
curves is the same we say the angle is preserved.

In general, if two curves in the z-plane intersect at a point z0, and their image curves under the
mapping w = f(z) intersect at w0 = f(z0) and the angle between the two original curves at z0

equals the angle between the image curves at w0 we say that the mapping is conformal at z0.

An analytic function is conformal everywhere except where f ′(z) = 0.

Task

At which points is w = ez not conformal?

Your solution

Answer

f ′(z) = ez. Since this is never zero the mapping is conformal everywhere.

Inversion
The mapping w = f(z) =

1

z
is called an inversion. It maps the interior of the unit circle in the

z-plane to the exterior of the unit circle in the w-plane, and vice-versa. Note that

w = u + iv =
x

x2 + y2
− y

x2 + y2
i and similarly z = x + iy =

u

u2 + v2
− v

u2 + v2
i

so that

u =
x

x2 + y2
and v = − y

x2 + y2
.
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A line through the origin in the z-plane will be mapped into a line through the origin in the w-plane.
To see this, consider the line y = mx, for m constant. Then

u =
x

x2 + m2x2
and v = − mx

x2 + m2x2

so that v = −mu, which is a line through the origin in the w-plane.

Task

Consider the line ax + by + c = 0 where c 6= 0. This represents a line in the
z-plane which does not pass through the origin. To what type of curve does it
map in the w-plane?

Your solution

Answer
The mapped curve is

au

u2 + v2
− bv

u2 + v2
+ c = 0

Hence au− bv + c(u2 + v2) = 0. Dividing by c we obtain the equation:

u2 + v2 +
a

c
u− b

c
v = 0

which is the equation of a circle in the w-plane which passes through the origin.

Similarly, it can be shown that a circle in the z-plane passing through the origin maps to a line in
the w-plane which does not pass through the origin. Also a circle in the z-plane which does not pass
through the origin maps to a circle in the w-plane which does pass through the origin. The inversion
mapping is an example of the bilinear transformation:

w = f(z) =
az + b

cz + d
where we demand that ad− bc 6= 0

(If ad− bc = 0 the mapping reduces to f(z) = constant.)

Task

Find the set of bilinear transformations w = f(z) =
az + b

cz + d
which map z = 2 to

w = 1.

Your solution
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Answer

1 =
2a + b

2c + d
. Hence 2a + b = 2c + d.

Any values of a, b, c, d satisfying this equation will do provided ad− bc 6= 0.

Task

Find the bilinear transformations for which z = −1 is mapped to w = 3.

Your solution

Answer

3 =
−a + b

−c + d
. Hence −a + b = −3c + 3d.

Example 6
Find the bilinear transformation which maps

(a) z = 2 to w = 1, and

(b) z = −1 to w = 3, and

(c) z = 0 to w = −5

Solution

We have the answers to (a) and (b) from the previous two Tasks:

2a + b = 2c + d

−a + b = −3c + 3d

If z = 0 is mapped to w = −5 then −5 =
b

d
so that b = −5d. Substituting this last relation into

the first two obtained we obtain

2a− 2c− 6d = 0

−a + 3c− 8d = 0

Solving these two in terms of d we find 2c = 11d and 2a = 17d. Hence the transformation is:

w =
17z − 10

11z + 2
(note that the d’s cancel in the numerator and denominator).
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Some other mappings are shown in Figure 4.

z2

z3

z1/2

zα

π/3

π/α

z-plane w-plane

Figure 4

As an engineering application we consider the Joukowski transformation

w = z − `2

z
where ` is a constant.

It is used to map circles which contain z = 1 as an interior point and which pass through z = −1
into shapes resembling aerofoils. Figure 5 shows an example:

x

y

z-plane w-plane

u

v

−1 1

Figure 5

This creates a cusp at which the associated fluid velocity can be infinite. This can be avoided by
adjusting the fluid flow in the z-plane. Eventually, this can be used to find the lift generated by such
an aerofoil in terms of physical characteristics such as aerofoil shape and air density and speed.
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Exercise

Find a bilinear transformation w =
az + b

cz + d
which maps

(a) z = 0 into w = i

(b) z = −1 into w = 0

(c) z = −i into w = 1

Answer

(a) z = 0, w = i gives i =
b

d
so that b = di

(b) z = −1, w = 0 gives 0 =
−a + b

−c + d
so −a + b = 0 so a = b.

(c) z = −i, w = 1 gives 1 =
−ai + b

−ci + d
so that −ci + d = −ai + b = d + di (using (a) and (b))

We conclude from (c) that −c = d. We also know that a = b = di.

Hence w =
diz + di

−dz + d
=

iz + i

−z + 1
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