Standard Complex
Functions

## Introduction

In this Section we examine some of the standard functions of the calculus applied to functions of a complex variable. Note the similarities to and differences from their equivalents in real variable calculus.

- understand the concept of a function of a


## Prerequisites

Before starting this Section you should
complex variable and its derivative

- be familiar with the Cauchy-Riemann equations


## Learning Outcomes

- apply the standard functions of a complex variable discussed in this Section
On completion you should be able to ..


## 1. Standard functions of a complex variable

The functions which we have considered so far have mostly been built from powers of $z$. We consider other functions here.

## The exponential function

Using Euler's relation we are led to define

$$
\mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x} \cdot \mathrm{e}^{\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y)
$$

From this definition we can show readily that when $y=0$ then $\mathrm{e}^{z}$ reduces to $\mathrm{e}^{x}$, as it should.
If, as usual, we express $w$ in real and imaginary parts then: $w=\mathrm{e}^{z}=u+\mathrm{i} v$ so that $u=\mathrm{e}^{x} \cos y, v=\mathrm{e}^{x} \sin y$. Then

$$
\frac{\partial u}{\partial x}=\mathrm{e}^{x} \cos y=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\mathrm{e}^{x} \sin y=-\frac{\partial v}{\partial x} .
$$

Thus by the Cauchy-Riemann equations, $\mathrm{e}^{\boldsymbol{z}}$ is analytic everywhere. It can be shown from the definition that if $f(z)=\mathrm{e}^{z}$ then $f^{\prime}(z)=\mathrm{e}^{z}$, as expected.
(1) By calculating $\left|\mathrm{e}^{z}\right|^{2}$ show that $\left|\mathrm{e}^{z}\right|=\mathrm{e}^{x}$.

## Your solution

## Answer

$\left|\mathrm{e}^{z}\right|^{2}=\left|\mathrm{e}^{x} \cos y+\mathrm{i} \mathrm{e}^{x} \sin y\right|^{2}=\left(\mathrm{e}^{x} \cos y\right)^{2}+\left(\mathrm{e}^{x} \sin y\right)^{2}=\left(\mathrm{e}^{x}\right)^{2}\left(\cos ^{2} y+\sin ^{2} y\right)=\left(\mathrm{e}^{x}\right)^{2}$.
Therefore $\left|\mathrm{e}^{z}\right|=\mathrm{e}^{x}$.

## Example 7

Find $\arg \left(\mathrm{e}^{z}\right)$.

## Solution

If $\theta=\arg \left(\mathrm{e}^{z}\right)=\arg \left(\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y)\right)$ then $\tan \theta=\frac{\mathrm{e}^{x} \sin y}{\mathrm{e}^{x} \cos y}=\tan y$. Hence $\arg \left(\mathrm{e}^{z}\right)=y$.

## Example 8

Find the solutions (for $z$ ) of the equation $\mathrm{e}^{z}=\mathrm{i}$

## Solution

To find the solutions of the equation $\mathrm{e}^{z}=\mathrm{i}$ first write i as $0+1 \mathrm{i}$ so that, equating real and imaginary parts of $\mathrm{e}^{z}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y)=0+1 \mathrm{i}$ gives, $\mathrm{e}^{x} \cos y=0$ and $\mathrm{e}^{x} \sin y=1$.

Therefore $\cos y=0$, which implies $y=\frac{\pi}{2}+k \pi$, where $k$ is an integer. Then, using this we see that $\sin y= \pm 1$. But $\mathrm{e}^{x}$ must be positive, so that $\sin y=+1$ and $\mathrm{e}^{x}=1$. This last equation has just one solution, $x=0$. In order that $\sin y=1$ we deduce that $k$ must be even. Finally we have the complete solution to $\mathrm{e}^{z}=\mathrm{i}$, namely:

$$
z=\left(\frac{\pi}{2}+k \pi\right) \mathrm{i}, k \text { an even integer. }
$$



Obtain all the solutions to $\mathrm{e}^{z}=-1$.

First find equations involving $\mathrm{e}^{x} \cos y$ and $\mathrm{e}^{x} \sin y$ :

## Your solution

## Answer

As a first step to solving the equation $\mathrm{e}^{z}=-1$ obtain expressions for $\mathrm{e}^{x} \cos y$ and $\mathrm{e}^{x} \sin y$ from $\mathrm{e}^{z}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y)=-1+0$. Hence $\mathrm{e}^{x} \cos y=-1, \mathrm{e}^{x} \sin y=0$.

Now using the expression for $\sin y$ deduce possible values for $y$ and hence from the first equation in $\cos y$ select the values of $y$ satisfying both equations and deduce the form of the solutions for $z$ :

## Your solution

## Answer

The two equations we have to solve are: $\mathrm{e}^{x} \cos y=-1, \mathrm{e}^{x} \sin y=0$. Since $\mathrm{e}^{x} \neq 0$ we deduce $\sin y=0$ so that $y=k \pi$, where $k$ is an integer. Then $\cos y= \pm 1$ (depending as $k$ is even or odd). But $\mathrm{e}^{x} \neq-1$ so $\mathrm{e}^{x}=1$ leading to the only possible solution for $x: x=0$. Then, from the second relation: $\cos y=-1$ so $k$ must be an odd integer. Finally, $z=k \pi i$ where $k$ is an odd integer. Note the interesting result that if $z=0+\pi \mathrm{i}$ then $x=0, y=\pi$ and $\mathrm{e}^{z}=1(\cos \pi+\mathrm{i} \sin \pi)=-1$. Hence $\mathrm{e}^{\mathrm{i} \pi}=-1$, a remarkable equation relating fundamental numbers of mathematics in one relation.

## Trigonometric functions

We denote the complex counterparts of the real trigonometric functions $\cos x$ and $\sin x$ by $\cos z$ and $\sin z$ and we define these functions by the relations:

$$
\cos z \equiv \frac{1}{2}\left(\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}\right), \quad \sin z \equiv \frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}\right) .
$$

These definitions are consistent with the definitions (Euler's relations) used for $\cos x$ and $\sin x$.
Other trigonometric functions can be defined in a way which parallels real variable functions. For example,

$$
\tan z \equiv \frac{\sin z}{\cos z}
$$

Note that

$$
\frac{d}{d z}(\sin z)=\frac{d}{d z}\left\{\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}\right)\right\}=\frac{1}{2 \mathrm{i}}\left(\mathrm{i}^{\mathrm{i} z}+\mathrm{i}^{-\mathrm{i} z}\right)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}\right)=\cos z .
$$

## Answer

$$
\begin{aligned}
\frac{d}{d z}(\cos z) & =\frac{d}{d z}\left\{\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}\right)\right\} \\
& =\frac{\mathrm{i}}{2}\left(\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}\right)=-\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}\right)=-\sin z .
\end{aligned}
$$

Among other useful relationships are

$$
\begin{aligned}
\sin ^{2} z+\cos ^{2} z & =-\frac{1}{4}\left(\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}\right)^{2}+\frac{1}{4}\left(\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}\right)^{2} \\
& =\frac{1}{4}\left(-\mathrm{e}^{2 \mathrm{i} z}+2-\mathrm{e}^{-2 \mathrm{i} z}+\mathrm{e}^{2 \mathrm{i} z}+2+\mathrm{e}^{-2 \mathrm{i} z}\right)=\frac{1}{4} \cdot 4=1
\end{aligned}
$$

Also, using standard trigonometric expansions:

$$
\begin{aligned}
\sin z=\sin (x+\mathrm{i} y)=\sin x \cos \mathrm{i} y+\cos x \sin \mathrm{i} y & =\sin x\left(\frac{\mathrm{e}^{-y}+\mathrm{e}^{y}}{2}\right)+\cos x\left(\frac{\mathrm{e}^{-y}-\mathrm{e}^{y}}{2 \mathrm{i}}\right) \\
& =\sin x \cosh y-\frac{1}{\mathrm{i}} \cos x \sinh y \\
& =\sin x \cosh y+\mathbf{i} \cos x \sinh y .
\end{aligned}
$$

Show that $\cos z=\cos x \cosh y-\mathrm{i} \sin x \sinh y$.

## Your solution

## Answer

$$
\begin{aligned}
\cos z=\cos (x+\mathrm{i} y)=\cos x \cos \mathrm{i} y-\sin x \sin \mathrm{i} y & =\cos x\left(\frac{\mathrm{e}^{-y}+\mathrm{e}^{y}}{2}\right)-\sin x\left(\frac{\mathrm{e}^{-y}-\mathrm{e}^{y}}{2 \mathrm{i}}\right) \\
& =\cos x \cosh y+\frac{1}{\mathrm{i}} \sin x \sinh y \\
& =\cos x \cosh y-\mathrm{i} \sin x \sinh y
\end{aligned}
$$

## Hyperbolic functions

In an obvious extension from their real variable counterparts we define functions $\cosh z$ and $\sinh z$ by the relations:

$$
\cosh z=\frac{1}{2}\left(\mathrm{e}^{z}+\mathrm{e}^{-z}\right), \quad \sinh z=\frac{1}{2}\left(\mathrm{e}^{z}-\mathrm{e}^{-z}\right) .
$$

Note that $\frac{d}{d z}(\sinh z)=\frac{1}{2} \frac{d}{d z}\left(\mathrm{e}^{z}-\mathrm{e}^{-z}\right)=\frac{1}{2}\left(\mathrm{e}^{z}+\mathrm{e}^{-z}\right)=\cosh z$.

## Your solution

## Answer

$\frac{d}{d z}(\cosh z)=\frac{1}{2} \frac{d}{d z}\left(\mathrm{e}^{z}+\mathrm{e}^{-z}\right)=\frac{1}{2}\left(\mathrm{e}^{z}-\mathrm{e}^{-z}\right)=\sinh z$.
Other relationships parallel those for trigonometric functions. For example it can be shown that

$$
\cosh z=\cosh x \cos y+\mathrm{i} \sinh x \sin y \quad \text { and } \quad \sinh z=\sinh x \cos y+\mathrm{i} \cosh x \sin y
$$

These relationships can be deduced from the general relations between trigonometric and hyperbolic functions (can you prove these?):

$$
\cosh \mathrm{i} z=\cos z \quad \text { and } \quad \sinh \mathrm{i} z=\mathrm{i} \sin z
$$

## Example 9

Show that $\cosh ^{2} z-\sinh ^{2} z=1$.

## Solution

$$
\begin{aligned}
\cosh ^{2} z & =\frac{1}{4}\left(\mathrm{e}^{z}+\mathrm{e}^{-z}\right)^{2}=\frac{1}{4}\left(\mathrm{e}^{2 z}+2+\mathrm{e}^{-2 z}\right) \\
\sinh ^{2} z & =\frac{1}{4}\left(\mathrm{e}^{z}-\mathrm{e}^{-z}\right)^{2}=\frac{1}{4}\left(\mathrm{e}^{2 z}-2+\mathrm{e}^{-2 z}\right) \\
\therefore \quad \cosh ^{2} z & -\sinh ^{2} z=\frac{1}{4}(2+2)=1 .
\end{aligned}
$$

Alternatively since $\cosh \mathrm{i} z=\cos z$ then $\cosh z=\cos \mathrm{i} z$ and $\operatorname{since} \sinh \mathrm{i} z=\mathrm{i} \sin z$ it follows that $\sinh z=-\mathrm{i} \sin \mathrm{i} z$ so that
$\cosh ^{2} z-\sinh ^{2} z=\cos ^{2} \mathrm{i} z+\sin ^{2} \mathrm{i} z=1$

## Logarithmic function

Since the exponential function is one-to-one it possesses an inverse function, which we call $\ln z$. If $w=u+\mathrm{i} v$ is a complex number such that $\mathrm{e}^{w}=z$ then the logarithm function is defined through the statement: $w=\ln z$. To see what this means it will be convenient to express the complex number $z$ in exponential form as discussed in HELM 10.3: $z=r \mathrm{e}^{\mathrm{i} \theta}$ and so

$$
w=u+\mathrm{i} v=\ln \left(r \mathrm{e}^{\mathrm{i} \theta}\right)=\ln r+\mathrm{i} \theta .
$$

Therefore $u=\ln r=\ln |z|$ and $v=\theta$. However $\mathrm{e}^{\mathrm{i}(\theta+2 k \pi)}=\mathrm{e}^{\mathrm{i} \theta} . \mathrm{e}^{2 k \pi \mathrm{i}}=\mathrm{e}^{\mathrm{i} \theta} \cdot 1=\mathrm{e}^{\mathrm{i} \theta}$ for integer $k$. This means that we must be more general and say that $v=\theta+2 k \pi, k$ integer. If we take $k=0$ and confine $v$ to the interval $-\pi<v \leq \pi$, the corresponding value of $w$ is called the principal value of $\ln z$ and is written $\operatorname{Ln}(z)$.

In general, to each value of $z \neq 0$ there are an infinite number of values of $\ln z$, each with the same real part. These values are partitioned into branches of range $2 \pi$ by considering in turn $k=0$, $k= \pm 1, k= \pm 2$ etc. Each branch is defined on the whole $z$-plane with the exception of the point $z=0$. On each branch the function $\ln z$ is analytic with derivative $\frac{1}{z}$ except along the negative real axis (and at the origin). Figure 6 represents the situation schematically.


Figure 6
The familiar properties of a logarithm apply to $\ln z$, except that in the case of $\operatorname{Ln}(z)$ we have to adjust the argument by a multiple of $2 \pi$ to comply with $-\pi<\arg (\operatorname{Ln}(z)) \leq \pi$
For example
(a) $\ln (1+\mathrm{i})=\ln \left(\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}}\right)=\ln \sqrt{2}+\mathrm{i}\left(\frac{\pi}{4}+2 k \pi\right)$

$$
=\frac{1}{2} \ln 2+\mathrm{i}\left(\frac{\pi}{4}+2 k \pi\right) .
$$

(b) $\operatorname{Ln}(1+\mathrm{i})=\frac{1}{2} \ln 2+\mathrm{i} \frac{\pi}{4}$.
(c) If $\ln z=1-\mathrm{i} \pi$ then $z=\mathrm{e}^{1-\mathrm{i} \pi}=\mathrm{e}^{1} \cdot \mathrm{e}^{-\mathrm{i} \pi}=-e$.

Find (a) $\ln (1-\mathrm{i}) \quad$ (b) $\operatorname{Ln}(1-\mathrm{i}) \quad$ (c) $z$ when $\ln z=1+\mathrm{i} \pi$

## Your solution

## Answer

(a) $\ln (1-\mathrm{i})=\ln \left(\sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}\right)=\ln \sqrt{2}+\mathrm{i}\left(-\frac{\pi}{4}+2 k \pi\right)=\frac{1}{2} \ln 2+\left(-\frac{\pi}{4}+2 k \pi\right)$.
(b) $\operatorname{Ln}(1-\mathrm{i})=\frac{1}{2} \ln 2-\mathrm{i} \frac{\pi}{4}$.
(c) $z=\mathrm{e}^{1+\mathrm{i} \pi}=\mathrm{e}^{1} \cdot \mathrm{e}^{\mathrm{i} \pi}=-e$.

## Exercises

1. Obtain all the solutions to $\mathrm{e}^{z}=1$.
2. Show that $1+\tan ^{2} z \equiv \sec ^{2} z$
3. Show that $\cosh ^{2} z+\sinh ^{2} z \equiv \cosh 2 z$
4. Find $\ln (\sqrt{3}+\mathrm{i}), \quad \operatorname{Ln}(\sqrt{3}+\mathrm{i})$.
5. Find $z$ when $\ln z=2+\pi \mathrm{i}$

## Answers

1. $\mathrm{e}^{x} \cos y=1$ and $\mathrm{e}^{x} \sin y=0 \quad \therefore \quad \sin y=0$ and $y=k \pi$ where $k$ is an integer.

Then $\cos y= \pm 1$ and since $\mathrm{e}^{x}>0$ we take $\cos y=1$ and $\mathrm{e}^{x}=1$ so that $x=0$. Then $\cos y=1$ and $k$ is an even integer. $\quad \therefore \quad z=2 k \pi i$ for $k$ integer.
2. $\tan z=\frac{1}{\mathrm{i}}\left(\frac{\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}}{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}}\right)$

$$
1+\tan ^{2} z=1-\frac{\mathrm{e}^{2 \mathrm{i} z}+\mathrm{e}^{-2 \mathrm{i} z}-2}{\mathrm{e}^{2 \mathrm{i} z}+\mathrm{e}^{-2 \mathrm{i} z}+2}=\frac{4}{\mathrm{e}^{2 \mathrm{i} z}+\mathrm{e}^{-2 \mathrm{i} z}+2}=\frac{2^{2}}{\left(\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}\right)^{2}}=\frac{1}{\cos ^{2} z}=\sec ^{2} z .
$$

3. $\cosh ^{2} z+\sinh ^{2} z=\frac{1}{4}\left(\mathrm{e}^{2 z}+2+\mathrm{e}^{-2 z}\right)+\frac{1}{4}\left(\mathrm{e}^{2 z}-2+\mathrm{e}^{-2 z}\right)=\frac{1}{2}\left(\mathrm{e}^{2 z}+\mathrm{e}^{-2 z}\right)=\cosh 2 z$.
4. $\ln (\sqrt{3}+1)=\ln \sqrt{5}+\mathrm{i}\left(\frac{\pi}{6}+2 k \pi\right)=\frac{1}{2} \ln 5+\mathrm{i}\left(\frac{\pi}{6}+2 k \pi\right) . \quad \operatorname{Ln}(\sqrt{3}+\mathrm{i})=\frac{1}{2} \ln 5+\mathrm{i} \frac{\pi}{6}$.
5. If $\ln z=2+\pi \mathrm{i}$ then $z=\mathrm{e}^{2+\pi i}=\mathrm{e}^{2} \mathrm{e}^{\mathrm{i} \pi}=-\mathrm{e}^{2}$.
