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Introduction
In this Section we examine some of the standard functions of the calculus applied to functions of
a complex variable. Note the similarities to and differences from their equivalents in real variable
calculus.
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Prerequisites

Before starting this Section you should . . .

• understand the concept of a function of a
complex variable and its derivative

• be familiar with the Cauchy-Riemann
equations�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• apply the standard functions of a complex
variable discussed in this Section
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1. Standard functions of a complex variable
The functions which we have considered so far have mostly been built from powers of z. We consider
other functions here.

The exponential function
Using Euler’s relation we are led to define

ez = ex+iy = ex.eiy = ex(cos y + i sin y).

From this definition we can show readily that when y = 0 then ez reduces to ex, as it should.
If, as usual, we express w in real and imaginary parts then: w = ez = u + iv so that
u = ex cos y, v = ex sin y. Then

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y = −∂v

∂x
.

Thus by the Cauchy-Riemann equations, eeezzz is analytic everywhere. It can be shown from the
definition that if f(z) = ez then f ′(z) = ez, as expected.

Task

By calculating |ez|2 show that |ez| = ex.

Your solution

Answer
|ez|2 = |ex cos y + iex sin y|2 = (ex cos y)2 + (ex sin y)2 = (ex)2(cos2 y + sin2 y) = (ex)2.

Therefore |ez| = ex.

Example 7
Find arg(ez).

Solution

If θ = arg(ez) = arg(ex(cos y + i sin y)) then tan θ =
ex sin y

ex cos y
= tan y. Hence arg(ez) = y.
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Example 8
Find the solutions (for z) of the equation ez = i

Solution

To find the solutions of the equation ez = i first write i as 0+1i so that, equating real and imaginary
parts of ez = ex(cos y + i sin y) = 0 + 1i gives , ex cos y = 0 and ex sin y = 1.

Therefore cos y = 0, which implies y =
π

2
+ kπ, where k is an integer. Then, using this we see that

sin y = ±1. But ex must be positive, so that sin y = +1 and ex = 1. This last equation has just
one solution, x = 0. In order that sin y = 1 we deduce that k must be even. Finally we have the
complete solution to ez = i, namely:

z =
(π

2
+ kπ

)
i, k an even integer.

Task

Obtain all the solutions to ez = −1.

First find equations involving ex cos y and ex sin y:

Your solution

Answer
As a first step to solving the equation ez = −1 obtain expressions for ex cos y and ex sin y from
ez = ex(cos y + i sin y) = −1 + 0i. Hence ex cos y = −1, ex sin y = 0.

Now using the expression for sin y deduce possible values for y and hence from the first equation in
cos y select the values of y satisfying both equations and deduce the form of the solutions for z:

Your solution

Answer
The two equations we have to solve are: ex cos y = −1, ex sin y = 0. Since ex 6= 0 we deduce
sin y = 0 so that y = kπ, where k is an integer. Then cos y = ±1 (depending as k is even or odd).
But ex 6= −1 so ex = 1 leading to the only possible solution for x: x = 0. Then, from the second
relation: cos y = −1 so k must be an odd integer. Finally, z = kπi where k is an odd integer. Note
the interesting result that if z = 0 + πi then x = 0, y = π and ez = 1(cos π + i sin π) = −1. Hence
eiπ = −1, a remarkable equation relating fundamental numbers of mathematics in one relation.
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Trigonometric functions

We denote the complex counterparts of the real trigonometric functions cos x and sin x by cos z and
sin z and we define these functions by the relations:

cos z ≡ 1

2
(eiz + e−iz), sin z ≡ 1

2i
(eiz − e−iz).

These definitions are consistent with the definitions (Euler’s relations) used for cos x and sin x.

Other trigonometric functions can be defined in a way which parallels real variable functions. For
example,

tan z ≡ sin z

cos z
.

Note that

d

dz
(sin z) =

d

dz

{
1

2i
(eiz − e−iz)

}
=

1

2i
(ieiz + ie−iz) =

1

2
(eiz + e−iz) = cos z.

Task

Show that
d

dz
(cos z) = − sin z.

Your solution

Answer

d

dz
(cos z) =

d

dz

{
1

2
(eiz + e−iz)

}
=

i

2
(eiz − e−iz) = − 1

2i
(eiz − e−iz) = − sin z.

Among other useful relationships are

sin2 z + cos2 z = −1

4
(eiz − e−iz)2 +

1

4
(eiz + e−iz)2

=
1

4
(−e2iz + 2− e−2iz + e2iz + 2 + e−2iz) =

1

4
· 4 = 1.
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Also, using standard trigonometric expansions:

sin z = sin(x + iy) = sin x cos iy + cos x sin iy = sin x

(
e−y + ey

2

)
+ cos x

(
e−y − ey

2i

)
= sin x cosh y − 1

i
cos x sinh y

= sin x cosh y + i cos x sinh y.

Task

Show that cos z = cos x cosh y − i sin x sinh y.

Your solution

Answer

cos z = cos(x + iy) = cos x cos iy − sin x sin iy = cos x

(
e−y + ey

2

)
− sin x

(
e−y − ey

2i

)
= cos x cosh y +

1

i
sin x sinh y

= cos x cosh y − i sin x sinh y

Hyperbolic functions
In an obvious extension from their real variable counterparts we define functions cosh z and sinh z
by the relations:

cosh z =
1

2
(ez + e−z), sinh z =

1

2
(ez − e−z).

Note that
d

dz
(sinh z) =

1

2

d

dz
(ez − e−z) =

1

2
(ez + e−z) = cosh z.
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Task

Determine
d

dz
(cosh z).

Your solution

Answer
d

dz
(cosh z) =

1

2

d

dz
(ez + e−z) =

1

2
(ez − e−z) = sinh z.

Other relationships parallel those for trigonometric functions. For example it can be shown that

cosh z = cosh x cos y + i sinh x sin y and sinh z = sinh x cos y + i cosh x sin y

These relationships can be deduced from the general relations between trigonometric and hyperbolic
functions (can you prove these?):

cosh iz = cos z and sinh iz = i sin z

Example 9
Show that cosh2 z − sinh2 z = 1.

Solution

cosh2 z =
1

4
(ez + e−z)2 =

1

4
(e2z + 2 + e−2z)

sinh2 z =
1

4
(ez − e−z)2 =

1

4
(e2z − 2 + e−2z)

∴ cosh2 z − sinh2 z =
1

4
(2 + 2) = 1.

Alternatively since cosh iz = cos z then cosh z = cos iz and since sinh iz = i sin z it follows that
sinh z = −i sin iz so that

cosh2 z − sinh2 z = cos2 iz + sin2 iz = 1
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Logarithmic function
Since the exponential function is one-to-one it possesses an inverse function, which we call ln z. If
w = u+ iv is a complex number such that ew = z then the logarithm function is defined through the
statement: w = ln z. To see what this means it will be convenient to express the complex number
z in exponential form as discussed in 10.3: z = reiθ and so

w = u + iv = ln(reiθ) = ln r + iθ.

Therefore u = ln r = ln |z| and v = θ. However ei(θ+2kπ) = eiθ.e2kπi = eiθ.1 = eiθ for integer k. This
means that we must be more general and say that v = θ + 2kπ, k integer. If we take k = 0 and
confine v to the interval −π < v ≤ π, the corresponding value of w is called the principal value of
ln z and is written Ln(z).

In general, to each value of z 6= 0 there are an infinite number of values of ln z, each with the same
real part. These values are partitioned into branches of range 2π by considering in turn k = 0,
k = ±1, k = ±2 etc. Each branch is defined on the whole z−plane with the exception of the point

z = 0. On each branch the function ln z is analytic with derivative
1

z
except along the negative real

axis (and at the origin). Figure 6 represents the situation schematically.

x

y

Figure 6

The familiar properties of a logarithm apply to ln z, except that in the case of Ln(z) we have to
adjust the argument by a multiple of 2π to comply with −π < arg(Ln(z)) ≤ π
For example

(a) ln(1 + i) = ln
(√

2eiπ
4

)
= ln

√
2 + i

(
π
4

+ 2kπ
)

=
1

2
ln 2 + i

(π

4
+ 2kπ

)
.

(b) Ln(1 + i) =
1

2
ln 2 + i

π

4
.

(c) If ln z = 1− iπ then z = e1−iπ = e1.e−iπ = −e.
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Task

Find (a) ln(1− i) (b) Ln(1− i) (c) z when ln z = 1 + iπ

Your solution

Answer

(a) ln(1− i) = ln
(√

2e−iπ
4

)
= ln

√
2 + i

(
−π

4
+ 2kπ

)
=

1

2
ln 2 +

(
−π

4
+ 2kπ

)
.

(b) Ln(1− i) =
1

2
ln 2− i

π

4
.

(c) z = e1+iπ = e1.eiπ = −e.

Exercises

1. Obtain all the solutions to ez = 1.

2. Show that 1 + tan2 z ≡ sec2 z

3. Show that cosh2 z + sinh2 z ≡ cosh 2z

4. Find ln(
√

3 + i), Ln(
√

3 + i).

5. Find z when ln z = 2 + πi

Answers

1. ex cos y = 1 and ex sin y = 0 ∴ sin y = 0 and y = kπ where k is an integer.

Then cos y = ±1 and since ex > 0 we take cos y = 1 and ex = 1 so that x = 0. Then
cos y = 1 and k is an even integer. ∴ z = 2kπi for k integer.

2. tan z =
1

i

(
eiz − e−iz

eiz + e−iz

)

1 + tan2 z = 1− e2iz + e−2iz − 2

e2iz + e−2iz + 2
=

4

e2iz + e−2iz + 2
=

22

(eiz + e−iz)2
=

1

cos2 z
= sec2 z.

3. cosh2 z + sinh2 z =
1

4
(e2z + 2 + e−2z) +

1

4
(e2z − 2 + e−2z) =

1

2
(e2z + e−2z) = cosh 2z.

4. ln(
√

3 + 1) = ln
√

5 + i(π
6

+ 2kπ) = 1
2
ln 5 + i(π

6
+ 2kπ). Ln(

√
3 + i) = 1

2
ln 5 + iπ

6
.

5. If ln z = 2 + πi then z = e2+πi = e2eiπ = −e2.
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