Cauchy's Theorem

Introduction

In this Section we introduce Cauchy's theorem which allows us to simplify the calculation of certain contour integrals. A second result, known as Cauchy's integral formula, allows us to evaluate some integrals of the form $\oint_{C} \frac{f(z)}{z-z_{0}} d z$ where z_{0} lies inside C.

Prerequisites

Before starting this Section you should

Learning Outcomes

- state and use Cauchy's theorem
- state and use Cauchy's integral formula
- be familiar with the basic ideas of functions of a complex variable
- be familiar with line integrals

1. Cauchy's theorem

Simply-connected regions

A region is said to be simply-connected if any closed curve in that region can be shrunk to a point without any part of it leaving a region. The interior of a square or a circle are examples of simply connected regions. In Figure 11 (a) and (b) the shaded grey area is the region and a typical closed curve is shown inside the region. In Figure 11 (c) the region contains a hole (the white area inside). The shaded region between the two circles is not simply-connected; curve C_{1} can shrink to a point but curve C_{2} cannot shrink to a point without leaving the region, due to the hole inside it.

Figure 11

Key Point 2

Cauchy's Theorem

The theorem states that if $f(z)$ is analytic everywhere within a simply-connected region then:

$$
\oint_{C} f(z) d z=0
$$

for every simple closed path C lying in the region.
This is perhaps the most important theorem in the area of complex analysis.

As a straightforward example note that $\oint_{C} z^{2} d z=0$, where C is the unit circle, since z^{2} is analytic everywhere (see Section 261). Indeed $\oint_{C} z^{2} d z=0$ for any simple contour: it need not be circular. Consider the contour shown in Figure 12 and assume $f(z)$ is analytic everywhere on and inside the
contour C.

Figure 12
Then by analogy with real line integrals

$$
\int_{A E B} f(z) d z+\int_{B D A} f(z) d z=\oint_{C} f(z) d z=0 \quad \text { by Cauchy's theorem. }
$$

Therefore

$$
\int_{A E B} f(z) d z=-\int_{B D A} f(z) d z=\int_{A D B} f(z) d z
$$

(since reversing the direction of integration reverses the sign of the integral).
This implies that we may choose any path between A and B and the integral will have the same value providing $f(z)$ is analytic in the region concerned.

Integrals of analytic functions only depend on the positions of the points A and B, not on the path connecting them. This explains the 'coincidences' referred to previously in Section 26.4.

Using 'simple' integration evaluate $\int_{\mathrm{i}}^{1+2 \mathrm{i}} \cos z d z$, and explain why this is valid.

Your solution

Answer

$$
\int_{\mathrm{i}}^{1+2 \mathrm{i}} \cos z d z=[\sin z]_{\mathrm{i}}^{1+2 \mathrm{i}}=\sin (1+2 \mathrm{i})-\sin \mathrm{i}
$$

This way of determining the integral is legitimate because $\cos z$ is analytic (everywhere).

We now investigate what occurs when the closed path of integration does not necessarily lie within a simply-connected region. Consider the situation described in Figure 13.

Figure 13
Let $f(z)$ be analytic in the region bounded by the closed curves C_{1} and C_{2}. The region is cut by the line segment joining A and B.

Consider now the closed curve $A E A B F B A$ travelling in the direction indicated by the arrows. No line can cross the cut $A B$ and be regarded as remaining in the region. Because of the cut the shaded region is simply connected. Cauchy's theorem therefore applies (see Key Point 2).

Therefore

$$
\oint_{A E A B F B A} f(z) d z=0 \text { since } f(z) \text { is analytic within and on the curve } A E A B F B A .
$$

Note that

$$
\int_{A B} f(z) d z=-\int_{B A} f(z) d z, \quad \text { being a simple change of direction. }
$$

Also, we can divide the closed curve into smaller sections:

$$
\begin{aligned}
\oint_{A E A B F B A} f(z) d z & =\int_{A E A} f(z) d z+\int_{A B} f(z) d z+\int_{B F B} f(z) d z+\int_{B A} f(z) d z \\
& =\int_{A E A} f(z) d z+\int_{B F B} f(z) d z=0
\end{aligned}
$$

i.e.

$$
\oint_{C_{1}} f(z) d z-\oint_{C_{2}} f(z) d z=0
$$

(since we assume that closed paths are travelled anticlockwise).
Therefore $\oint_{C_{1}} f(z) d z=\oint_{C_{2}} f(z) d z$.
This allows us to evaluate $\oint_{C_{1}} f(z) d z$ by replacing C_{1} by any curve C_{2} such that the region between them contains no singularities (see Section 261) of $f(z)$. Often we choose a circle for C_{2}.

Example 12

Determine $\oint_{C} \frac{6}{z(z-3)} d z$ where C is the curve $|z-3|=5$ shown in Figure 14.

Figure 14

Solution

We observe that $f(z)=\frac{6}{z(z-3)}$ is analytic everywhere except at $z=0$ and $z=3$.
Let C_{1} be the circle of unit radius centred at $z=3$ and C_{2} be the unit circle centered at the origin. By analogy with the previous example we state that

$$
\oint_{C} \frac{6}{z(z-3)} d z=\oint_{C_{1}} \frac{6}{z(z-3)} d z+\oint_{C_{2}} \frac{6}{z(z-3)} d z
$$

(To show this you would need two cuts: from C to C_{1} and from C to C_{2}.)

The remaining parts of this problem are presented as two Tasks.

Expand $\frac{6}{z(z-3)}$ into partial functions.

Your solution

Answer

Let $\frac{6}{z(z-3)} \equiv \frac{A}{z}+\frac{B}{z-3} \equiv \frac{A(z-3)+B z}{z(z-3)}$. Then $A(z-3)+B z \equiv 6$.
If $z=0 \quad A(-3)=6 \quad \therefore \quad A=-2$. If $z=3 \quad B \times 3=6 \quad \therefore \quad B=2$.
$\therefore \quad \frac{6}{z(z-3)} \equiv-\frac{2}{z}+\frac{2}{z-3}$.

Thus:

$$
\oint_{C} \frac{6}{z(z-3)} d z=\oint_{C_{1}} \frac{2}{z-3} d z-\oint_{C_{1}} \frac{2}{z} d z+\oint_{C_{2}} \frac{2}{z-3} d z-\oint_{C_{2}} \frac{2}{z} d z=I_{1}-I_{2}+I_{3}-I_{4} .
$$

(a) Find the value of I_{1} :

Your solution

Answer

Using Key Point 1 we find that $I_{1}=2 \times 2 \pi \mathrm{i}=4 \pi \mathrm{i}$.
(b) Find the value of I_{2} :

Your solution

Answer

The function $\frac{1}{z}$ is analytic inside and on C_{1} so that $I_{2}=0$.
(c) Find the value of I_{3} :

Your solution

Answer

The function $\frac{1}{z-3}$ is analytic inside and on C_{2} so $I_{3}=0$.
(d) Find the value of I_{4} :

Your solution

Answer

$I_{4}=4 \pi \mathrm{i} \quad$ again using Key Point 1.
(e) Finally, calculate $I=I_{1}-I_{2}+I_{3}-I_{4}$:

Your solution

Answer

$\oint_{C} \frac{6 d z}{z(z-3)}=4 \pi \mathrm{i}-0+0-4 \pi \mathrm{i}=0$.

Exercises

1. Evaluate $\int_{1+\mathrm{i}}^{2+3 \mathrm{i}} \sin z d z$.
2. Determine $\oint_{C} \frac{4}{z(z-2)} d z$ where C is the contour $|z-2|=4$.

Answers

1. $\int_{1+\mathrm{i}}^{2+3 \mathrm{i}} \sin z d z=[-\cos z]_{1+\mathrm{i}}^{2+3 \mathrm{i}}=\cos (1+\mathrm{i})-\cos (2+3 \mathrm{i})$ since $\sin z$ is analytic everywhere.
2.

$f(z)=\frac{4}{z(z-2)}$ is analytic everywhere except at $z=0$ and $z=2$.
Call $I=\oint_{C} \frac{4}{z(z-2)} d z=\oint_{C_{1}} \frac{4}{z(z-2)} d z+\oint_{C_{2}} \frac{4}{z(z-2)} d z$.
Now $\frac{4}{z(z-2)} \equiv-\frac{2}{z}+\frac{2}{z-2}$ so that

$$
\begin{aligned}
I & =\oint_{C_{1}} \frac{2}{z-2} d z-\oint_{C_{1}} \frac{2}{z} d z+\oint_{C_{2}} \frac{2}{z-2} d z-\oint_{C_{2}} \frac{2}{z} d z \\
& =I_{1}+I_{2}+I_{3}+I_{4}
\end{aligned}
$$

I_{2} and I_{3} are zero because of analyticity.
$I_{1}=2 \times 2 \pi \mathrm{i}=4 \pi \mathrm{i}$, by Key Point 1 and $I_{4}=-4 \pi \mathrm{i}$ likewise.
Hence $I=4 \pi \mathrm{i}+0+0-4 \pi \mathrm{i}=0$.

2. Cauchy's integral formula

This is a generalization of the result in Key Point 2:

Key Point 3
 Cauchy's Integral Formula

If $f(z)$ is analytic inside and on the boundary C of a simply-connected region then for any point z_{0} inside C,

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi \mathrm{i} f\left(z_{0}\right)
$$

Example 13

Evaluate $\oint_{C} \frac{z}{z^{2}+1} d z$ where C is the path shown in Figure 15:

$$
C_{1}:|z-\mathrm{i}|=\frac{1}{2}
$$

Figure 15

Solution

We note that $z^{2}+1 \equiv(z+\mathrm{i})(z-\mathrm{i})$.
Let $\frac{z}{z^{2}+1}=\frac{z}{(z+\mathrm{i})(z-\mathrm{i})}=\frac{z /(z+\mathrm{i})}{z-\mathrm{i}}$.
The numerator $z /(z+\mathrm{i})$ is analytic inside and on the path C_{1} so putting $z_{0}=\mathrm{i}$ in the Cauchy integral formula (Key Point 3)

$$
\oint_{C_{1}} \frac{z}{z^{2}+1} d z=2 \pi \mathrm{i}\left[\frac{\mathrm{i}}{\mathrm{i}+\mathrm{i}}\right]=2 \pi \mathrm{i} \cdot \frac{1}{2}=\pi \mathrm{i} .
$$

Evaluate $\oint_{C} \frac{z}{z^{2}+1} d z$ where C is the path (refer to the diagram)
(a) $C_{2}: \quad|z+\mathrm{i}|=\frac{1}{2}$
(b) $C_{3}: \quad|z|=2$.

(a) Use the Cauchy integral formula to find an expression for $\oint_{C_{2}} \frac{z}{z^{2}+1} d z$:

Your solution

Answer

$\frac{z}{z^{2}+1}=\frac{z /(z-\mathrm{i})}{z+\mathrm{i}}$. The numerator is analytic inside and on the path C_{2} so putting $z_{0}=-\mathrm{i}$ in the Cauchy integral formula gives

$$
\oint_{C_{2}} \frac{z}{z^{2}+1} d z=2 \pi \mathrm{i}\left[\frac{-\mathrm{i}}{-2 \mathrm{i}}\right]=\pi \mathrm{i} .
$$

(b) Now find $\oint_{C_{3}} \frac{z}{z^{2}+1} d z$:

Your solution

Answer

By analogy with the previous part,

$$
\oint_{C_{3}} \frac{z}{z^{2}+1} d z=\oint_{C_{1}} \frac{z}{z^{2}+1} d z+\oint_{C_{2}} \frac{z}{z^{2}+1} d z=\pi \mathrm{i}+\pi \mathrm{i}=2 \pi \mathrm{i} .
$$

The derivative of an analytic function

If $f(z)$ is analytic in a simply-connected region then at any interior point of the region, z_{0} say, the derivatives of $f(z)$ of any order exist and are themselves analytic (which illustrates what a powerful property analyticity is!). The derivatives at the point z_{0} are given by Cauchy's integral formula for derivatives:

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi \mathrm{i}} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where C is any simple closed curve, in the region, which encloses z_{0}.
Note the case $n=1$:

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi \mathrm{i}} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Example 14

Evaluate the contour integral

$$
\oint_{C} \frac{z^{3}}{(z-1)^{2}} d z
$$

where C is a contour which encloses the point $z=1$.

Solution

Since $f(z)=\frac{z^{3}}{(z-1)^{2}}$ has a pole of order 2 at $z=1$ then $\oint_{C} f(z) d z=\oint_{C^{\prime}} \frac{z^{3}}{(z-1)^{2}} d z$
where C^{\prime} is a circle centered at $z=1$.
If $g(z)=z^{3}$ then $\quad \oint_{C} f(z) d z=\oint_{C^{\prime}} \frac{g(z)}{(z-1)^{2}} d z$
Since $g(z)$ is analytic within and on the circle C^{\prime} we use Cauchy's integral formula for derivatives to show that

$$
\oint_{C} \frac{z^{3}}{(z-1)^{2}} d z=2 \pi \mathrm{i} \times \frac{1}{1!}\left[g^{\prime}(z)\right]_{z=1}=2 \pi \mathrm{i}\left[3 z^{2}\right]_{z=1}=6 \pi \mathrm{i} .
$$

Exercise

Evaluate $\oint_{C} \frac{z}{z^{2}+9} d z$ where C is the path:
(a) $C_{1}:|z-3 i|=1$
(b) $C_{2}: \quad|z+3 \mathrm{i}|=1$
(c) $C_{3}: \quad|z|=6$.

Answers

(a) We will use the fact that $\frac{z}{z^{2}+9}=\frac{z}{(z+3 \mathrm{i})(z-3 \mathrm{i})}=\frac{z /(z+3 \mathrm{i})}{z-3 \mathrm{i}}$

The numerator $\frac{z}{z+3 \mathrm{i}}$ is analytic inside and on the path C_{1} so putting $z_{0}=3 \mathrm{i}$ in Cauchy's integral formula

$$
\oint_{C_{1}} \frac{z}{z^{2}+9} d z=2 \pi \mathrm{i}\left[\frac{3 \mathrm{i}}{3 \mathrm{i}+3 \mathbf{i}}\right]=2 \pi \mathrm{i} \times \frac{1}{2}=\pi \mathrm{i} .
$$

(b) Here $\frac{z /(z-3 \mathrm{i})}{z+3 \mathrm{i}}$

The numerator is analytic inside and on the path C_{2} so putting $z=-3 \mathrm{i}$ in Cauchy's integral formula:

$$
\oint_{C_{2}} \frac{z}{z^{2}+9} d z=2 \pi \mathrm{i}\left[\frac{-3 \mathrm{i}}{-3 \mathrm{i}-3 \mathrm{i}}\right]=\pi \mathrm{i} .
$$

(c) The integral is the sum of the two previous integrals and has value $2 \pi \mathrm{i}$.

