

The Business of Science®

50 years of dilution refrigeration

Continuous innovation of ultra low temperature research tools

Graham Batey Oxford Instruments

In the beginning – 1960s

The Business of Science®

Sir Martin Wood and first dilution refrigerator achieved 67 mK

1970s

The Business of Science®

Copper heat exchanger dilution unit.

Low temperature experiments performed on large scale custom projects.

Silver heat exchangers heat exchangers introduced on Oxford Instruments' systems in 1976.

1980s – Top loading into vacuum and liquid systems

The Business of Science®

Top loading into the mixing chamber

Top loading into vacuum sample holder

1980s – Top loading into the mixing chamber

INSTRUMENTS

The Business of Science®

In 1985, the Nobel Prize was awarded to Professor Klaus von Klitzing 'for the discovery of the quantized Hall effect". He worked on Oxford Instruments' helium-3 system and subsequently continued taking more data using an Oxford TLM dilution refrigerator and 21.5 T magnet.

1980s – Rotating dilution refrigerators to study vortices in helium

The Business of Science®

Rotating cryostat Henry Hall et al 1988

Rotating cryostat Paul Walmsley et al 2013

1980's – Side access system for beam line experiments

The Business of Science®

Published Hyperfine interactions vol. 43 – Schouten.

1990's – Dilution refrigerators for dark matter experiments

The Business of Science®

Special DR's for detectors – published JLTP vol. 39 Batey.

1990s – Plastic dilution refrigerators for pulsed magnets

The Business of Science®

30 mk / 50 Tesla

1990s – Dilution refrigerators for gravity wave detectors

The Business of Science®

3 tonne aluminium bar, T<100 mk, D/R in collaboration with T. Niinikoski. High power dilution unit, coiled copper sinter exchangers.

The Business of Science®

NHFML – 30 mK Dilution fridge in 45 T hybrid

45 T Hybrid Magnet Base temp. @ 0 T = 17 mK Base temp. @ 45 T = 30 mK

1990's – Ultra low temperature technology becomes a standard product

The Business of Science®

Development of standard Kelvinox® range of dilution refrigerators and magnet systems.

1990's – Development of electronic devices using Kelvinox range of dilution refrigerators

The Business of Science®

Development of electronic devices using standard Kelvinox range of dilution refrigerators and magnet systems.

1990's – Continuously circulating sorbtion pumped fridge for fractional quantum hall effect measurements

The Business of Science®

Published JLTP, vol. 13 Mikheev & Batey.

1990s – Ultra low temperature technology super fluid helium3 Nobel Prize

The Business of Science®

The Nobel Prize in Physics 1996 David M. Lee, Douglas D. Osheroff, Robert C. Richardson

Share this: 👎 8 🔽 🕂 💈 🔤

The Nobel Prize in Physics 1996

David M. Lee Prize share: 1/3 Douglas D. Osheroff Prize share: 1/3

Robert C. Richardson Prize share: 1/3

The Nobel Prize in Physics 1996 was awarded jointly to David M. Lee, Douglas D. Osheroff and Robert C. Richardson *"for their discovery of superfluidity in helium-3"*.

Bob Richardson with Oxford fridge

1990s – Dilution refrigerators used for fractional quantum Hall effect winning Noble Prize

The Business of Science®

The Nobel Prize in Physics 1998 Robert B. Laughlin, Horst L. Störmer, Daniel C. Tsui

Share this: 📑 😵 🗾 🕂 🙆 🖾

The Nobel Prize in Physics 1998

Robert B. Laughlin Prize share: 1/3 Horst L. Störmer Prize share: 1/3 Daniel C. Tsui Prize share: 1/3

The Nobel Prize in Physics 1998 was awarded jointly to Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui *"for their discovery of a new form of quantum fluid with fractionally charged excitations"*.

Photos: Copyright © The Nobel Foundation

2000s – Cryofree® technology and the rise of quantum computing

The Business of Science®

J-T condensation – as per Kurt Uhlig

- No liquid helium required
- Open structure for easy experimental access
- Very large experimental plates
- Fully automated cool down from room temperature

90% of market is now Cryofree and size of market has doubled using this technology!

2000s – Cryofree technology and the rise of quantum computing

The Business of Science[®]

Integrated magnet

Mu-metal shielding

Sample loading

Quantum opto-mechanics

- Ultra low vibrations
- Fast cool down
- Low noise wiring

Superconducting quantum computing

- Large sample space
- High cooling power
- Magnetic shielding

Quantum hall effects

- High field solenoid magnet
- Low eddy current holder
- High temperature control

Spin qubits and toplogical QC

- 3-axis vector magnet
- Sample loading mechanism
- Low noise wiring

2000s – Cryofree technology and the rise of quantum computing

The Business of Science®

The combination of **Cryofree**[®] technology and the intense interest in quantum information processing (QIP) bring a new level of multi-system laboratories, and the first commercial quantum computers (Niels Bohr Institute). 7 installed with 4 more to be delivered.

2000s – Cryofree technology and the rise of quantum computing

The Business of Science®

Rapid device prototyping using sample loaders ~ 8 hrs cooldown time

	Contents lists available at ScienceDirect
273	Cryogenics
E SAL	
ELSEVIER	journal homepage: www.elsevier.com/locate/cryogenics

A rapid sample-exchange mechanism for cryogen-free dilution refrigerators compatible with multiple high-frequency signal connections

G. Batey, S. Chappell, M.N. Cuthbert, M. Erfani, A.J. Matthews *, G. Teleberg Oxford Instruments Omicron NanoScience, Tubney Woods, Abingdom, Oxfordshire 0X13 50X, UK Building large experiments D-Wave processor ~ 240mm dia.

© Oxford Instruments 2015

2010s – Large scale Cryofree dilution refrigerators

The Business of Science®

Mixing chamber 430 mm dia.

Coldest Cryofree dilution refrigerator in the world !

- 3.3 mK base temperature
- 25 μW of cooling power at 20 mK
- 1000 µW of cooling power at 100 mK

Journal of Physics: Conference Series

Journal of Physics, Conf series 568 (2014) 032014

A new ultra-low-temperature cryogen-free experimental platform

G Batey, A J Matthews and M Patton Oxford Instruments Omicron NanoScience Tubney Woods, Abingdon, Oxfordshire, UK, OX13 5QX E-mail: Anthony.Matthews@oxinst.com

Outer diameter < 50 mm to suit 50 mm diameter 'wet' or 'dry' VTI

2010s – Dilution refrigerators and SPM

FIG. 1. (Color Online) Overview of dual tip mK STM system. The dewar and radiation shields that surround the dilution refrigerator are not shown.

2010s and the future

The Business of Science[®]

and a base temperature of 600 µK.

A microkelvin cryogen-free experimental platform with integrated noise thermometry

> G Batey¹, A Casey^{2,3}, M N Cuthbert¹, A J Matthews^{1,3}, J Saunders² and A Shibahara

The Business of Science®

The next 50 years of the dilution refrigerator story is expected to be equally exciting as there is likely to be a very high volume requirement in one of the following fields –

- Quantum Computing or Quantum communication?
- Milli Kelvin STM analytical system?
- Low temperature detectors for security screening?

The Business of Science®

Thank you