Laser Spectroscopy on Bunched Radioactive Ion Beams

Jon Billowes

University of Manchester

Balkan School on Nuclear Physics, Bodrum 2004

Lecture 1.1.1 Nuclear moments1.2 Hyperfine interaction in free atoms1.3 Lasers and laser spectroscopy1.4 Collinear-beams laser spectroscopy

Lecture 2.2.1 Ion beam cooling and bunching2.2 Experiments with bunched beams2.3 Laser ionization techniques

Balkan School on Nuclear Physics, 2004 www.man.ac.uk/dalton/files

Summary of Isotope Shift and Hyperfine Structure

Hyperfine structure of atomic transition

(Isotope shift found using centroids of hyperfine multiplet)

Nuclear spin I Magnetic moment μ Quadrupole moment Q_s

2.1 Ion beam cooling and bunching

Solution: an ion beam "cooler"

The JYFL cooler/buncher

Principle of RFQ trap

Fig. 1: Quadrupole field.

Time-averaged force towards central axis

Damping of motion provided by lowpressure helium gas at room temperature

Fig. 2: Schematic of a quadrupole mass spectrometer

Bunching ions in the RFQ cooler

Background reduction by signal gating

Sensitivity gains using the RFQ ion-cooler

Photons from laser-excitation of radioactive ⁸⁸Zr

2000 ions/sec 48 minutes

- 1. Zr isotopes shape changes near N=50 shell
- 2. Ce isotopes shape transition at N=60
- 3. Neutron-deficient Ti proton skins?
- 4. High spin isomers effect of pairing reduction?

Fission product yields at IGISOL (25 MeV p + ²³⁸U)

Figure 3. Spectra obtained for the neutron-rich isotopes of zirconium. The fit to 101 Zr is shown above the data.

Charge radii of Zr isotopes

Radii predictions for ₄₀**Zr from B(E2) values**

(Very similar to ₃₈Sr behaviour)

$$\left<\beta_{\lambda}^{2}\right> = \left(\frac{4\pi}{3ZeR_{0}^{\lambda}}\right)\sum_{f}B(E\lambda;J_{gs}\rightarrow J_{f})$$

Shaded areas: only B(E2) to the first 2⁺ state used.

Should also include higher states and B(E3) strenghts.

Brix-Kopfermann plot

(differential changes in mean square charge radii)

Light Ti isotopes

Is ⁴⁴Ti an α-cluster nucleus?

neighbouring chains

The K=8 isomers in ¹³⁰Ba and ¹⁷⁶Yb

```
Structure of ^{178}Hf 16<sup>+</sup> (31 year) isomer
```

$$\begin{bmatrix} \nu \ 7/2 \ [514] \ \nu \ 9/2 \ [624] \end{bmatrix}_{(8^{-})} \ \begin{bmatrix} \pi \ 7/2 \ [404] \ \pi \ 9/2 \ [514] \end{bmatrix}_{(8^{-})}$$
$$(\nu \ h_{9/2})(\nu \ i_{13/2}) \ (\pi \ g_{7/2})(\pi \ h_{11/2})$$

Intrinsic quadrupole moment and mean square radii

for N=106 isomers

Nucleus	State	Q_0	$\langle r^2 \rangle^{isomer} - \langle r^2 \rangle^{g.s.}$				
		barns	fm^2				
$^{178}\mathrm{Hf}$	0^{+} g.s.	6.961(43)					
	$16^{+} (4qp)$	7.2(1)	-0.076(12)	Boos <i>et al</i> (1994)			
177 Lu	$7/2^+$ g.s.	7.26(6)					
	$23/2^-(3\rm qp)$	7.33(6)	-0.035(4)	Georg $et \ al \ (1998)$			

The ¹⁷⁶Yb K=8 isomer

Production: (d,pn) at 13 MeV, 5.5 µA

Flux: 200 isomers/sec (total flux at A=176: 8,400 ions/sec)

Experimental Deformation Parameters for Neighbouring Yb Isotopes

Nucleus	State	Q_0 barns	eta_2
175 Yb	$7/2^{-}$ g.s.	7.52(11)	0.286(4)
¹⁷⁶ Yb	0^{+} g.s.	7.40(5)	0.280(2)
¹⁷⁶ Yb	8^{-} (2qp)	7.54(11)	0.285(4)
¹⁷⁷ Yb	$9/2^+$ g.s.	7.37(11)	0.278(4)

Diffuseness of nuclear surface the 16^+ isomer in 178–Hf

Calculation by Bordeaux Group (Quentin, Pillet, Libert)

Without pairing effects, Isomer shift = +0.092 fm²

Including pairing Isomer shift = -0.086 fm²

(Experiment: -0.076(12) fm²)

Explaining ¹⁷⁸Hf (16⁺) isomer shift

- Similar features now found in 4 isomers: smaller radius than ground state, but not due to reduction in deformation.
- Effect greatest for 4qp state.
- Effect for 2qp isomer is about twice the normal odd-even staggering (a 1qp effect?).

New development: Laser ion source FURIOS (using laser resonance ionization)

Powerful pulsed lasers can be tuned to ionize neutral atoms of a selected element with high

Applications:

Laser ion sources – beams selected by mass *and* atomic number Ultra-high sensitivity laser spectroscopy – collinear beams RIS

The CRIS method

50 Hz delivery rate, synchronized with laser pulse

- All atoms from the ion source have a chance to be ionized
- Resonance located by ion counting (not photon counting)
- Doppler-broadening free

Collinear resonance ionization

+40kV IGISOL

Ion Source

De-tuning frequency relative to an arbitary origin (MHz)

Laser transportation and atom beam overlap

(Fast Universal Resonant laser IOn Source)

Accessibility of elements using lasers

₅₈ Ce	₉₅ Pr	₆₀ Nd	₆₁ Pm	₆₂ Sm	₀ ₆₃ Eu	₆₄ Gd	₆₅ Tb	₆₆ Dy	₆₇ Ho	₆₈ Ei	. ⁶⁹ Lu	₁ ₇₀ Yk	₀ ₇₁ Lu
₉₀ Th	₉₁ Pa	₉₂ U	₉₃ Np	₉₄ Pu	₉₅ Am	₉₆ Cm	∣ ₉₇ Bk	₉₈ Fc	₉₉ Es	₁₀₀ Fn	ו ₁₀₁ Me	d ₁₀₂ No	ه ₁₀₃ Lı

NIPNET meeting, Saariselka, April 2004

End of Lecture 2

Simplified schematic of MBD-200

