

Extending laser spectroscopy with optical pumping

At the university of Jyväskylä, Finland

Laser spectroscopy at JYFL

Ground state transitions

But....

- 0 -> 1 gives μ , Q_s , $\delta < r^2 >$, X
- Difficult to calibrate atomic factors
- Not necessarily the most efficient
- No accessible transitions (HR, cts)
- Hyperfine anomaly?
- Second order perturbed?

eg. Y,Nb Y Nb Mo Ta Ta

- Rich in isomers l > 1/2
- Large onset of deformation

- $J=0 \rightarrow J=1$ electronic transition
 - → 3 peaks (maximum) for each nuclear state
 - → $\delta < r^2 >$, μ, Q_s (but *not* the spin)

Droplet model analysis

The Univers of Manches

Problem of spin determination

\overline{A}	I^{π}	$A_{\rm hf}$ (MHz)	$B_{\rm hf}~({ m MHz})$	$\mu \; (\mu_{ m N})$	$Q_{\rm s}$ (b)	$\delta \nu^{98,98m}$ (MHz)
98m	(4)	-88.3(0.6)	+324.7(4.2)	+2.98(2)	+1.73(19)	-2746(3)
98m	(5)	-73.7(0.4)	+339.1(4.2)	+3.11(2)	+1.80(20)	-2735(3)

Ja

Similarly with A=102 and A=100

The University of Manchester

of Mancheste

Need for transitions from metastable states

Yttrium (J=0 atomic ground state)

No matter what we'll be limited to J = 1 upper state

Possibilities:

126.9, 138.7, 140.9, 152.8, 154.8, 157.3, 224.3 λ (nm) log(gf) 311.2 -2.24 349.6 -0.72 363.3 -0.08 420.5 -1.76

Measuring the $J=2 \rightarrow J=1$

Why at the exit of the cooler?

- Can use broadband/pulsed lasers
- Typically a few mW required

Pumping in the cooler: efficiency

363nm pumping of yttrium

¹⁰⁰Y structure for $J=2 \rightarrow J=1$

The University of Manchester

Spin determination of ¹⁰⁰Y

Charge radii (A=100,102)

The University of Manchester

Possibilities....

• Problem with the projection? $Q_0 = 0$

MANCH

nest

$$Q_0 = Q_s \frac{(I+1)(2I+3)}{I(2I-1)}$$

- A=100 (and heavier even-A isotopes) are 98m-like?
- Has an *isomeric* state been observed instead?

(stronger than pumping step)

(not $0 \rightarrow 1$)

Niobium on-line (fusion)

MANCHESTER

The University of Manchester

The University of Manchester

Case 4: Molybdenum

N~60 Mean-Square Charge Radii

Case 5: Tantalum region

Wealth of MQP isomers in tantalum

Multi quasi particle isomers

Decrease in ms charge radius despite an *increase* in static quadrupole deformation

MAN(

Optical pumping of tantalum

Pumping in the cooler summary

- Method of enhancing population of metastable states
- More freedom when selecting optical transition
- Chosen because:-
 - Strength

MANCH

Mancheste

- More peaks \rightarrow assignment of nuclear spin
- Simplicity \rightarrow calibration of atomic factors
- Small hyperfine anomaly
- Manageable or no hyperfine mixing
- Higher wavelength range from broadband lasers
- Being used for Y, Nb, Ta..... and many others to come

Future work

• Finish molybdenum...

Electronic homologues -

chromium and manganese

MANCH

Particpants

The University of Manchester, UK

J. Billowes, P. Campbell, F. Charlwood, B. Cheal E.B. Mané

The University of Jyväskylä, Finland

T. Eronen, A. Jokinen, T. Kessler, I.D. Moore, M. Reponen, S. Rothe, A. Saastamoinen, J. Äystö

The University of Birmingham, UK K. Baczynska, D.H. Forest, M. Rüffer, G. Tungate

The University of Surrey, UK

P. Stevenson